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Abstract

Acinetobacter  baumannii is  a  serious  pathogen  responsible  for  many  of  the  hospital-acquired
infections. The emergence of multi-drug and pan-drug resistant strains of A. Baumannii has been a
growing concern. Ampicillin-sulbactam combination has proven to be effective in the treatment of
several resistant strains. However, strains resistant to the ampicillin-sulbactam combination have
also emerged necessitating other combination therapy. Rapid and accurate identification of the
phenotype of the organism is essential for starting the right treatment. To this end, genome-based
approaches have garnered much attention. In this work, we report a multi-class machine-learning
based approach to predict the ampicillin-sulbactam resistance phenotype and Minimum Inhibitory
Concentration (MIC) of  Acinetobacter baumannii  based on the presence/absence of Antimicrobial
(AMR) genes in the genome of strains isolated in the USA region. We have used three classifiers,
namely,  Support  Vector  Machines (SVM),  Random Forest  (RF),  and extreme gradient boosting
(XGBoost) for building the classification models  with all  the genes and with selected genes as
features. The results show that, for phenotype prediction, XGBoost trained on selected genes as
features achieves a maximum overall accuracy of 92.5%, and for MIC values, RF trained on all
genes  as  features  achieves  maximum  accuracy  of  about  80%.  We  note  that  feature  selection
identifies  APH(3')-Ia,  AAC(I)  genes,  among  others,  to  be  contributing  to  the  discrimination
accuracy. It may be noted that APH(3')-Ia and AAC(I) are known to be involved in aminoglycoside
resistance while Ampicillin belongs to the penicillin class of antibiotics.  Further, we show that our
model, built based on the USA strains, achieves a prediction accuracy of about 80% for Indian
isolates pointing to the need for building machine learning models from region-specific data. 
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1. Introduction

Antimicrobial resistance (AMR) has emerged as one of the principal public health concerns in this
century [1-3]. It is estimated that there are at least 700,000 deaths attributable to AMR currently
and this number is expected to increase to 10 million by 2050 [4]. Recognizing this global concern,
the  World  Health  Organization  (WHO),  in  2012,  proposed  a  combination  of  interventions
including strengthening the health systems and surveillance, improving the use of antimicrobials
etc  [5].  Consequent  to  this,  several  nations  have  now  implemented  strong  AMR  surveillance
systems[6-8]. 

Acinetobacter baumannii, a bacteria commonly found in soil and water, and was once considered a
low-virulence  commensal  bacterium,  is  now  one  of  the  serious  pathogens  that  has  gained
resistance against a variety of drugs.  It  is  one of the pathogens which is the primary cause of
concern in many hospital-acquired infections, particularly in critically ill patients and those in the
Intensive Care Units (ICUs). It is estimated that about 20% of infections in the ICUs in Asia is
caused  by  A.  baumannii [9].  Further,  it  has  been  reported  that  mortality  associated  with  A.
baumannii infections range from 7.8% to 43% [10]. In the recent years, infections by A. baumannii
have also been reported in out-of-hospital settings and reports of community-acquired infections
have been increasing [11]. Consequently, the WHO has classified A. baumannii as one of the critical
priority pathogens for which there is an urgent need to develop new antibiotics [12]. Studies have
shown that  A.  baumannii quickly  develops  resistance  against  many known antimicrobials  and
adopts a variety of resistance mechanisms. The identification of multi-drug and pan-drug resistant
A. baumannii has been an alarm [13], [14]. The emergence of multi-drug resistant and pan-drug
resistant strains also spurred research in using combination therapy against these resistant strains.
Of these, sulbactam-based therapies (ampicillin-sulbactam combinations) have been shown to be
better in the combat against multi-drug resistant strains or strains that are resistant against last-line
drugs. For instance, it has been shown that high-dose ampicillin-sulbactam is effective against the
polymyxin-resistant strains [15]. High-dose ampicillin-sulbactam (with nebulized colistin) has also
proved to be an effective treatment strategy for late-onset Ventilator-Associated-Pneumonia from
multidrug resistant  A.  baumannii [16,17]. A combination of colistin and ampicillin/sulbactam has
proven to be effective against extensively drug-resistant A. baumannii bacteremia in neonates [18].
It has also been shown that ampicillin-sulbactam therapy had a higher microbiological eradication
rate  than  Tigecycline  in  treating  pneumonia  involving  a  complex  of  A.  calcoaceticus and  A.
baumanni [19]. 

A  bottleneck  in  the  treatment  of  these  infections  is  the  timely  identification  of  the  resistance
phenotype of the organism. Wrong identification will not only exacerbate the issue but also lead to
the development of newer antibiotic-resistant strains. Traditional methods of identification of the
resistant strain based on morphological and biochemical studies consume time.  With the advent of
Next Generation Sequencing technologies, whole genome sequencing-based approaches promise
accurate, rapid, and detailed identification of bacteria [20]. In fact, whole genome sequencing has
been incorporated into many National Antimicrobial Resistance Surveillance programs [21]. The
availability of whole genome sequences and the possibility of quick genome sequencing have led
to the development of several machine learning frameworks for predicting antimicrobial resistance
from whole genome sequences.  For instance, Liu et al., used support vector machines to predict
the  resistance  phenotype  of  five  drugs  against  Actinobacillus  pleuropneuomoniae using  k-mers

Int J Auto AI Mach Learn, Vol 2, Issue 2, December 15, 2021 67



ISSN 2563-7568

derived from whole  genome sequences  [22].  Kim et  al.,  used Antimicrobial  Resistance  (AMR)
ortholog genes and mutations observed in them to predict the resistance phenotype [23]. Nyugen
et  al.,  developed  a  machine  learning  framework  to  predict  the  AMR  phenotypes  based  on
incomplete  genomes  for  four  organisms,  viz.,  Klebsiella  pneumoniae,  Mycobacterium  tuberculosis,
Salmonella enterica, and Staphylococcus aureus [24]. Khaledi et al., identified markers by integrating
genomic, transcriptomic and phenotype data of Pseudomonas aeruginosa that can be reliably used in
a  machine  learning  framework  to  predict  the  antimicrobial  resistance  against  four  classes  of
antibiotics [25]. Machine learning has also been used to predict the MIC values based on genomic
features.  For  instance,  Marcus et  al.,  used XGBoost-based machine learning method to predict
MICs for nontyphoidal Salmonella [26]. Pataki et al., predicted the ciprofloxacin MIC of Escherichia
coli based on whole genome sequences [27]. Tan et al., predicted the MIC of meropenem against
Klebsiella pneumoniae from metagenomic data [28]. The AMR phenotype data used in the above
prediction models are majorly from a few regions (primarily the USA region). However, increasing
evidence  shows  that  the  genomic  make-up of  strains  from different  regions  of  the  world  are
distinct. For instance, Mehrotra et al., show that the genomes of Indian Helicobacter pylori strains
have distinct SNPs in their core genome [29]. Shankar et al.,  show that even among the Indian
isolates, there is huge diversity in the insertion sequences [30]. These studies, taken together, point
to the need to evaluate if the machine learning methods built based on data from one region can
predict the phenotype of strains from another region reliably. To this end, in this work, we present
a  multi-class  machine  learning  framework  to  predict  the  ampicillin-sulbactam  resistance
phenotype of  A. baumannii and the  MIC value  based on data  from the  USA. We evaluate  the
performance of these models in predicting the phenotype of Indian isolates of A. baumannii.  In the
next section, we present the materials and methods, followed by the results and discussion where
we show that our models based on Support Vector Machines, Random Forest and XGBoost which
achieves an accuracy of about 94%. 

2. Materials and Methods

2.1. Dataset Construction

The gene list and AMR phenotype of Acinetobacter baumannii genomes (taxon id 470) from the USA
region  were  retrieved  from  the  PATRIC  database  (version  3.6.12).  PATRIC  database  is  a
comprehensive  resource  whose  phenotype  information  is  curated  based  on  literature,  NCBI
database, and other public resources [31]. In this work, only genomes with laboratory-confirmed
antimicrobial phenotype with MIC values for Ampicillin-Sulbactam combination were retrieved
and only those with good quality WGS sequences with host as Homo sapiens were considered.
This resulted in 470 genomes. Briefly, there were 239 genomes that were susceptible, 203 that were
resistant,  and  28  that  had  intermediate  resistance  to  ampicillin-sulbactam  combination.  The
antimicrobial resistance genes in these genomes, annotated using the BLAT method against the
CARD database, were retrieved from the PATRIC database using the specialty genes functionality
in PATRIC. For entries where the gene symbol was not assigned in the PATRIC database, the same
was retrieved based on the Source ID from the NCBI database.  The presence-absence of these
genes in each genome was then used as the input features for machine learning methods. The
minimum inhibitory concentration (MIC) values of ampicillin-sulbactam concentrations for these
genomes were also retrieved from the PATRIC database. The methodology adopted by Nyugen et
al., [32], was used to prepare the MIC data. Briefly, since two values are present for combination
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drugs, the first value was used because the second value is dependent on the first. The MIC label

was changed to 2 x if the MIC was > x, x
2

  if the MIC was <x, and unaltered if the MIC was ≥ x∨≤ x .

This resulted in 5 different values, viz., 32, 16, 8, 4, and 2. The number of genomes with these
values is provided below in Table 1. 

Table 1: Number of genomes with each of the MIC value.
                                                                                           

MIC Value Number of genomes

32 202
16 29
8 45
4 132
2 62

We tested the performance of the tuned models on a validation dataset. The validation dataset
consists of data of Indian isolates of  A. baumannii retrieved from the PATRIC database. Briefly, it
consists of 8 genomes of  A. baumannii isolated from India. All of them were found to be either
resistant or of intermediate resistance to Ampicillin-Sulbactam. The MIC values of these isolates
were also retrieved from the PATRIC database. 

2.2. Classification Methods

There are three AMR phenotype classes,  viz.,  resistant,  intermediate,  and susceptible  and five
target values for MIC. Each of these (the AMR phenotype prediction and MIC value prediction)
was considered as a multi-class prediction problem. Three different classifiers, namely, Support
Vector Machines, Random Forest, and Extreme Gradient Boosting (XGBoost) were trained to find
out which of these performed better. 

2.2.1. Support Vector Machines (SVM)

Support Vector Machines (SVMs) is a very popular machine learning based algorithm   devised
rigorously from statistical machine learning theory by Vapnik [33,34]. It can be employed to learn
both supervised and unsupervised  tasks in different fields. For instance, Park et al., have used
SVM to discriminate outer membrane proteins [35]. It has also been successfully used in predicting
mutations that enhance or mitigate aggregation in proteins[36]. It has also been successfully used
in  the  prediction  of  CDK  inhibitors  and  lipocalins  [37,38].  SVM  is  very  robust  and  provides
excellent  prediction  performance  with  superior  generalization  capabilities.  For  linear  binary
classification problems, SVM builds a maximum margin hyperplane which is linear. We can define
the hyperplane  by the following  equation: 

w∙ x i+b=0

xi represents  the  vector  of  input  features,  b  the  bias  and w represent  the  weight  vectors.  For
linearly classifiable sequences  SVM develops a linear hyperplane which maximizes the margin.
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This margin can be defined as the sum of Euclidean distances between the hyperplane and the
nearest examples belonging to both classes. Such a problem can be shown to be an optimization
problem. More specifically it is  formulated as a weight vector norm minimization problem with
appropriately  defined   constraints.  It  can  be  shown  this  problem  finally  results  in  a  very
convenient quadratic optimization problem. The resulting weights characterising the hyperplane
equation can be defined by just the examples falling on the margins. These examples are known as
support vectors and hence the name support vector machines. This quadratic convex optimization
problem is highly desirable because it  provides a very desirable unique optimal solution. This
aspect  coupled  with  very  high  performance  characteristics  are  the  main  reasons  for  the  ever
increasing popularity of SVM. Figure 1 shows an illustration of the SVM methodology. 

For nonlinearly separable problems SVM employs a unique method; It first takes the problem to a
higher dimensional attribute space. Subsequently, in this higher dimensional space,  it employs the
maximum margin linear hyperplane for separation and classification. Such a transformation can
pose intractability difficulties. SVM overcomes this by resorting to appropriate kernel functions.
Kernel  functions  enable   all  computations  to  be  carried  out  in  the  input  space  itself.  Kernel
functions must satisfy Hilbert space axioms and positive definiteness conditions. Some examples
of popular kernel functions include Polynomial, Gaussian Radial Basis Function (RBF), and Multi-
layer Perceptron kernel functions. Apart from these, in bioinformatics, we have access to several
domain-dependent kernels. For increasing generalization capabilities, we can employ a soft margin
formulation which  incorporates a cost parameter. This parameter represents the trade-off between
margin maximization and misclassification error.

Figure 1: An illustration of support vector machine classification.

2.2.2. Random Forest (RF)

Random Forest [RF] is an ensemble of decision tree classifiers [39].  It is an improvement over the
conventional bagging methodology. Random forest essentially employs two different randomness
while  building  the  training  model.  The  first  randomness  deals  with  the  selection  of  training
examples in each of the trees of the forest. Every tree selects a distinct subset of examples with
bootstrap sampling with replacements. The other randomness deals with the selection of features
for the node splitting process; every level, in each tree of the forest ensemble uses the randomly
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selected feature subset for the splitting process employs a predetermined random subset of trees in
each tree. Attributes selected for each split and the split points are optimized by different criteria
like Gini Index, Entropy, and misclassification errors . In RF we grow each tree to full size and do
not employ any pruning in the trees. The distinct feature of random forest ( due to the use of
bootstrap sampling) is in each tree roughly one third of the examples are not used for building the
training models. These examples  are known as Out of Bag (OOB) examples. Due to this  feature,
we  can  test  RF  training  model  performance  by  using  these  OOB examples  as  a  test  set.  The
Accuracy of prediction of RF can be optimized by employing the optimal feature subset size for
node splitting.  RF has several advantages: a) two different feature rankings can be embedded in
the algorithm b) the algorithm can be used to remove outliers c) the algorithm can be effectively
used for missing values imputation. RF has been found to be a very robust classification algorithm
and has found uses in different function prediction tasks. Figure 2 illustrates the Random Forest
methodology. 

Figure 2: An illustration of the random forest method.

2.2.3. Extreme Gradient Boosting (XGBoost)

XGBoost  algorithm judiciously combines  the  well-known decision tree  (as  weak learners)  and
gradient  boosting  with  additional  features  for  high-speed  high-performance  classification
paradigm. The decision tree is a very popular interpretable and explainable supervised machine
learning algorithm. This can be used for both classification and regression tasks. In the decision
tree, we start with a head node and optimally split the most informative attribute at a split point.
This  process  is  repeated in  the  intermediate  nodes  until  we  reach  the  leaf  node  for  decision
making.  Boosting is  a  sequential  ensemble  of  different  learning models.  Predictions  are  made
sequentially wherein  the successor model fits  a model to minimize the errors of the predecessor
model. In gradient boosting the loss function is minimized by the employment of the gradient
descent  algorithm.   The  algorithm  has  three  different  variants;  1)  Learning  rate  incorporated
conventional deterministic gradient boosting 2) sub-sampling (at the row, column, and column per
split  levels)  enabled  Stochastic  Gradient  Boosting  3)   L1  and  L2  regularization  incorporated
gradient  boosting  The  algorithm  has  been  tuned  to  be  efficient  with  respect  to  memory  and
computational speed. 

2.3. Model Building and Performance Assessment 
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In this work, we created two different multiclass classification models using gene presence/absence
as features of  each genome – one for AMR phenotype prediction (Resistant,  Intermediate and
Susceptible) and the other for prediction of MIC values (64, 32, 16, 8, 4, 2). Because the number of
examples with the MIC value 64 were few, we removed those examples from further analysis. We
built multi-class classification models using Support Vector Machines (SVM), Random Forest (RF),
and XGBoost methods.  To maximise the generalisability of the models,  we randomly split  the
dataset  into  two stratified splits  (80% and 20%).  80% of  the  examples  were  used to  train  the
machine learning algorithm using 5-fold cross-validation (CV). For SVM we chose different kernels
and considered the cost and the kernel parameters for tuning. The cost parameter signifies the
trade-off  between  margin  maximization  and  misclassification  error.  The  Gamma  parameter
signifies the spread of the kernel. Similarly, for RF, maximum depth of the tree,  subset size of
features  considered  for  node  splitting  and  number  of  trees  (max_depth,  max_features,  and
n_estimators) were tuned. For the XGBoost algorithm, maximum depth of the trees, number of
boosting rounds, and the learning rate were tuned (max_depth, n_estimators and learning_rate).
These parameters were tuned to achieve the maximum CV accuracy value. The performance of the
tuned models was then evaluated using the test set (20% of the examples). We have also provided
simulation results in terms  of test precision, test recall, and test F1 score [40,41]. 

Feature selection is a very important pre-processing step which captures the informative attributes
and filters  out  the  noise  from  the  dataset.  There  are  several  feature  selection  methods  which
include filter, wrapper, and embedded methods [42-45]. We identified attributes that contributed
to the performance of the models using the permutation ranking methodology embedded in the
Random Forest algorithm. After ranking the features, we found the subset containing the top 25
genes that provided the maximum CV accuracy. Classification models were also constructed based
on the top-ranking gene features and their performances were evaluated. 

The trained models (with all the gene features or with the selected gene features) were then used to
predict the phenotype and MIC values of the validation dataset.  

3. Results & Discussion

Prediction of AMR phenotype based on genomic information is gaining much attention because of
its potential to enable rapid and accurate therapeutic strategies. Towards this, several works have
focused on using machine learning-based methods to predict the AMR phenotype of organisms
based on several different features extracted from the genomic sequences. In this work, we use the
presence/absence  of  AMR genes  in  the  genomes  of  the  pathogen Acinetobacter  baumannii  to
predict  its  AMR  phenotype  and  as  well  predict  its  MIC  value  against  Ampicillin-sulbactam
combinations.  For  this,  we built  and tested  the  performance of  three  different  classifiers,  viz.,
Support  Vector  Machines,  Random  Forest  and  Extreme  Gradient  Boost  methods.  We  used
stratified  five-fold  CV  to  estimate  the  training  accuracy  of  the  classification  models.  The
hyperparameters were tuned using a grid approach to achieve the best CV accuracy value. 

3.1. Classification Models Based on All Features

We first built the three classification models using all the features for phenotype prediction and
MIC value prediction.  The tuned parameters of these models,  CV accuracy,  test accuracy,  and
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validation set accuracy are all shown in Table 2a. As we see from the results, RF and XGBoost
achieve maximum test  accuracy  of  about  90% for  AMR phenotype prediction.  The  maximum
validation test accuracy achieved is only about 50%. In the case of MIC value prediction, maximum
test  accuracy  was  achieved  for  RF  (about  79%).  However,  the  corresponding  validation  test
accuracy  is  only  60%.  SVM  achieved a  validation  test  accuracy  of  80%.  We  also  tested  other
performance metrics such as precision, recall, and F1-score. The results are provided in Tables 2b
and  2c.  The  results  show  that  RF  and  XGBoost,  classifiers  with  maximum  test  accuracy  for
phenotype  prediction,  have  good  precision  and recall  values  for  the  resistant  and susceptible
classes,  while  showing  poor  performance  for  the  intermediate  class.  Similarly,  for  MIC  value
prediction, RF which had the maximum test accuracy showed good performance for all classes
except for the class value of 6. 

Table 2a: Tuned parameters and performance of the classifiers to predict the resistance phenotype and MIC 
using all features. 

Target Classifier Tuned Parameters Stratified 5-fold 
CV accuracy

Test accuracy Validation test
accuracy

Phenotype

SVM C:10 gamma:1
kernel:rbf

0.9421 0.8723 0

Random Forest max_depth:5
max_features:0.8
n_estimators:500

0.9263 0.9043 0.5

XGBoost learning_rate:0.01
max_depth:3

n_estimators:100

0.9211 0.9043 0.5

MIC

SVM C:1 gamma:0.1
kernel:rbf

0.8 0.7659 0.8

Random Forest max_depth:20
max_features:auto
n_estimators:200

0.8053 0.7979 0.6

XGBoost learning_rate:0.1
max_depth:3

n_estimators:500

0.8368 0.7872 0.4

Table 2b: Performance metrics of the tuned models for phenotype prediction with all features.
SVM RF XGBoost

Class Precision Recall F1-score Precision Recall F1-score Precision Recall F1-score
Intermediate 0.5 0.17 0.25 0 0 0 0 0 0
Resistant 1 0.82 0.9 0.97 0.93 0.95 0.97 0.93 0.95
Susceptible 0.81 1 0.9 0.89 1 0.94 0.89 1 0.94

Table 2c: Performance metrics of the tuned models for MIC prediction with all features.
                   SVM RF XGBoost

Class Precision Recall F1-score Precision Recall F1-score Precision Recall F1-score
2 1 0.92 0.96 1 0.92 0.96 1 0.92 0.96
4 0.66 0.93 0.77 0.71 0.93 0.81 0.71 0.93 0.81
8 0 0 0 1 0.22 0.36 1 0.11 0.2
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16 0 0 0 0.2 0.17 0.18 0.17 0.17 0.17
32 0.86 0.9 0.88 0.88 0.9 0.89 0.88 0.9 0.89

3.2. Classification Models Based on Selected Features 

We also performed feature selection to identify the features that contribute the maximum to the
performance of the model. The list of top genes that contribute to performance of the classifier is
shown in  Table  3.  This  list  includes  genes  such  as  TEM-1,  OXA which  are  known to  confer
resistance to ampicillin. Interestingly, we also find genes such as APH(3')-Ia, AAC(I) which are
involved in aminoglycoside resistance. This indicates that the genes involved in aminoglycoside
resistance are also involved in the discrimination of the ampicillin-sulbactam AMR phenotype. The
top-ranking genes were then used as features to construct classification models. The performance
of these models based on top-ranking genes is given in Table 4. 

Table 3: List of top-ranking genes that contribute to the accuracy of AMR phenotype and MIC value 
prediction, identified using permutation ranking filter.  
                               

Rank Phenotype MIC
0 TEM-1 TEM-1
1 APH(3')-Ia ANT(2'')-Ia
2 OXA-66 APH(3')-Ia
3 AAC(1) OXA-66
4 APH(3'')-Ib APH(6)-Id
5 APH(6)-Id AAC(1)
6 ANT(2'')-Ia APH(3'')-Ib
7 aadA sul1
8 tetA sul2
9 tetR tetC
10 PER-1 aadA
11 sul1 APH(3')-VIa
12 OXA-23 tetR
13 OXA-71 tetA
14 APH(3')-VIa OXA-71
15 tetC tufA
16 tufa PER-1
17 Tuf tet39
18 OXA-64 tuf
19 tet39 OXA-69
20 aadA17 OXA-23
21 OXA-69 OXA-64
22 sul2 CARB-16
23 AAC(6')-Iaf catI
24 catI OXA-100
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The results  in Table  4a show that,  for  phenotype prediction,  XGBoost  achieves maximum test
accuracy of 92%. For MIC value prediction, RF has the maximum test accuracy of about 79%. For
the validation dataset, SVM showed a maximum accuracy of 62.5% for phenotype prediction. For
MIC value prediction, SVM and XGBoost showed maximum validation test accuracy of 80%. The
additional performance metrics of the classification models for phenotype prediction are shown in
Table 4b. The results show that except for the intermediate class, the performances are good. For
MIC value prediction, the additional performance metrics are shown in Table 4c. The results show
that, except for class values of 9 and 6, the performance metrics are good for other classes.
 
Taken together, our results show a marginal improvement in the model performance metrics when
using  the  selected  features.  However,  the  validation  test  accuracy  improves,  particularly  for
phenotype prediction, from 50% to 62.5%. There is no significant improvement in the validation
test accuracy for MIC values.   

Table 4a: Tuned parameters and performance of the classifiers to predict the resistance phenotype and MIC 
values using the selected gene features.

Target Classifier Tuned parameters
Stratified 5-fold

 CV accuracy Test accuracy
Validation Test 

Accuracy

Phenotype

SVM
C:1 gamma:0.001

 Kernel:linear 0.9684 0.9042 0.625

Random
Forest

max_depth:10
max_features:0.8
 N_estimators:100 0.9105 0.9148 0.375

XGBoost

learning_rate:0.01
max_depth:3 

N_estimators:100 0.9526 0.9255 0.5

 MIC      

SVM
C:10 gamma:0.1

kernel:rbf 0.8263 0.7553 0.8

Random
Forest

max_depth:10
max_features:0.8
 n_estimators:100 0.8315 0.7872 0.6

XGBoost

learning_rate:0.01
max_depth:3 

N_estimators:100 0.7631 0.7446 0.8

Table 4b: Performance metrics of the tuned models for phenotype prediction with selected gene features.
                                        

SVM RF XGBoost
Class Precision Recall F1-score Precision Recall F1-score Precision Recall F1-score

Intermediate 0 0 0 0.33 0.17 0.22 0 0 0
Resistant 0.97 0.93 0.95 0.97 0.93 0.95 0.97 0.97 0.97

Susceptible 0.89 1 0.94 0.91 1 0.95 0.89 1 0.94

Table 4c: Performance metrics of the tuned models for MIC prediction with selected gene features.
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SVM RF XGBoost

Class Precision Recall F1-score Precision Recall F1-score Precision Recall F1-score

2 0.69 0.92 0.79 0.79 0.92 0.85 0.67 0.83 0.74

4 0.69 0.93 0.79 0.71 0.93 0.81 0.69 0.89 0.77

8 1 0.11 0.2 0.5 0.11 0.18 0 0 0

16 0 0 0 0.25 0.17 0.2 0 0 0

32 0.92 0.85 0.88 0.92 0.9 0.91 0.92 0.9 0.91

4. Conclusion

Antimicrobial resistance development is a serious threat, particularly in hospital settings. Rapid
and accurate  identification of  the  bacteria  and its  resistance  phenotype  is  crucial  for  devising
timely treatment procedures. In this regard, the advent of next generation sequencing methods has
greatly aided in quick genome-based identification of  the organism. Identification of  the AMR
phenotype of the organisms based on genome sequences have shown several promises, including
that  of  MIC prediction.  To this  end,  here,  we developed a  machine learning method that  can
predict the AMR phenotype and the MIC of A. baumannii, a serious pathogen in hospital-acquired
infections,  to ampicillin-sulbactam combination drugs.  Ampicillin-sulbactam combinations have
shown to be promising in the management of multi-drug and pan-drug resistant strains of  A.
baumannii. However, the emergence of resistant strains to ampicillin-sulbactam have been a cause
of concern. Here, we show that, machine learning models can predict the resistant phenotype of a
given  strain  of  A.  baumannii to  ampicillin-sulbactam  drug  combination  based  on  the
presence/absence of AMR genes in the genome with an accuracy of about 92%. The prediction
accuracy for MIC values is, however, low (about 79%). Our model is built based on data available
from the USA region. We constructed models using three different classifiers. We tested the tuned
models on a validation dataset consisting of data from Indian isolates of A. baumannii. We achieve
an accuracy of only about 62.5% in correctly predicting the AMR phenotype and 80% for MIC
value  for  this  validation  dataset.  This  underscores  the  need  for  constructing  region-specific
machine learning models for the accurate prediction of AMR phenotype.  
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