
ISSN 2593-7568 
 

  
Int J Auto AI Mach Learn, Vol 4, Issue 1, June 2024              1  
 
 

 

RESEARCH ARTICLE 

Multispecies Discrimination of Seals (Pinnipeds) 
using Hidden Markov Models (HMMs) 

Marek B Trawicki1* 

1Marquette University, Milwaukee, USA. 

 
Abstract 
 
Hidden Markov Models (HMMs) were developed and implemented for the discrimination of 
5 available Seals (Pinnipeds), namely the Bearded Seal (Erignathus barbatus), Harp Seal 
(Pagophilus groenlandicus), Leopard Seal (Hydrurga leptonyx), Ross Seal (Ommatophoca rossii), 
and Weddell Seal (Leptonychotes weddellii). The main objectives of the experiments were to 
study the impact of the frame size and step size and number of states for feature extraction 
and acoustic models on classification accuracy. Based on the experiments using Mel-
Frequency Cepstral Coefficients (MFCCs) extracted from the vocalizations (15 ms frame size 
and 4 ms step size), HMMs containing 20 states with single underlying Gaussian Mixture 
Model (GMM) produced discrimination of 95.77%. From the results, the framework could be 
applied to analysis for other marine mammals for both classification and detection of 
vocalizations and species. 
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1. Introduction 
 
Despite the superior performance of machine learning techniques for human speech 
processing tasks such as speech recognition and speaker identification [1], the application of 
the various methods (e.g., Hidden Markov Models (HMMs) [2], Gaussian Mixture Models 
(GMMs) [3], Artificial Neural Networks (ANNs) [4], and Deep Neural Networks (DNNs) [5] 
to bioacoustics has only begun to receive attention with the establishment of different 
frameworks to automatically identity animal vocalizations and species [6]. HMMs been 
particularly successful in performing song-type recognition and speaker identification for a 
large variety of mammals [7] such as the African Elephant (Loxodonta africana) [8], Norwegian 
Ortolan Bunting (Emberiza hortulana) [9], and Tiger (Panthera tigris) [10].  
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In contrast, HMMs have been primarily successful in performing classification and detection 
of a limited number of marine mammals, namely whale vocalizations: Blue Whale 
(Balaenoptera musculus) [11], Bryde’s Whale (Balaenoptera brydei) [12], and Killer Whale (Orcinus 
orca) [13]. Based on the promising results across numerous animals, HMMs can be applied to 
discriminate vocalizations for many other species of marine mammals. 
 
Seals (Pinnipeds) are a clade of carnivorous, fin-footed, and semi-aquatic marine mammals 
consisting of thirty-three species whose taxonomy is not fully understood by researchers [14]. 
Although the species is widespread around the world, the majority of the seals prefer the cold 
waters of the Northern and Southern Hemispheres [15]. Typically, the species spend most of 
their lives in the water but arrive ashore to mate, birth, molt, and escape from predators [16]. 
As some of the more common seals, the Bearded Seal (Erignathus barbatus), Harp Seal 
(Pagophilus groenlandicus), Leopard Seal (Hydrurga leptonyx), Ross Seal (Ommatophoca rossii), 
and Weddell Seal (Leptonychotes weddellii) produce a number of similar vocalizations for 
communication purposes, including growls, trills, and warbles [17]. In order to better 
understand the species, the seals can be classified automatically through their vocalizations 
by utilizing HMMs for the task of species identification [18].  
 
The remainder of this paper is organized into the following sections: Data (Section two), 
Methods (Section three), Results (Section four), and Conclusion (Section five). 
 
2. Data 
 
The Watkins Marine Mammal Sound Database [19] contains approximately 2000 unique 
recordings of more than 60 species of marine mammals (e.g., dolphins, seals, and whales) with 
over 15,000 annotated digital sound files spanning seven decades of work at the Woods Hole 
Oceanographic Institution (WHOI). From the database, the “Best of Cuts” category contains 
1694 sound files of high sound quality and low noise from 32 different species. Table 1 
summarizes the 142 recordings from the 5 available species of seals. 
 
Table 1: Database. 
 

Common Name Binomial Name Location Class Count 

Bearded Seal Erignathus barbatus Alaska BS 34 

Harp Seal Pagophilus groenlandicus Gulf of St. Lawrence HS 46 

Leopard Seal Hydrurga leptonyx Antarctica LS 10 

Ross Seal Ommatophoca rossi Antarctica RS 50 

Weddell Seal Leptonychotes weddellii Antarctica WS 2 

 
Figure 1 provides the representative time series and spectrograms from the individuals to 
better understand the complexity of the vocalizations. 
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Figure 1: Time series and spectrograms. 
 
Based on the spectrograms, the patterns in the vocalizations are distinctly visible for the 
Bearded Seal (BS), Harp Seal (HS), Leopard Seal (LS), Ross Seal (RS), and Wendell Seal (WS) 
across the range of frequencies 0 Hz–2500 Hz. Through the recordings, the vocalizations of 
the seals can be investigated to discriminate between the different species. 
 
3. Methods 
 
In order to perform classification through training and testing of the vocalizations, recordings 
must be parametrized into speech vectors that are then utilized for recognition. Given the set 
of training vocalizations corresponding to each particular model, the parameters of that model 
are determined automatically by a robust and efficient re-estimation procedure called the 
Baum-Welch Expectation Maximization algorithm [20,21]. Assuming training contains a 
sufficient number of representative vocalizations, the models are constructed to implicitly 
understand the many sources of variability. From the set of testing vocalizations, the 
likelihood of each model generating the vocalization is calculated quickly to determine the 
most likely model by the procedure called Viterbi algorithm [22]. Based on the classification 
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accuracy, the feature extraction and acoustic models can be adjusted to provide improvements 
in the recognition. 
 
3.1. Feature extraction 
 
Mel-Frequency Cepstral Coefficients (MFCCs) [23] are the classical features used in 
parametrization of vocalizations for numerous speech recognition applications [1]. According 
to the frame size and step size, the features are extracted on a frame-by-frame basis from the 
vocalizations. The cepstral coefficients 𝑐 are calculated from the log filterbank amplitudes 𝑚 
using the Discrete Cosine Transform (DCT) as,  
 

𝑐 = ට
ଶ

ே
∑ 𝑚 cos(

గ

ே
(𝑗 − 0.5))ே

ୀଵ                                                                                                          [1] 

 
where, N  is the number of filterbank channels. Since human beings perceive frequencies on 
a logarithmic scale [24], the filterbank channels are equally-spaced triangular filters with 
increasing bandwidths through increasing frequency f  on the Mel scale defined as,  
 
𝑀𝑒𝑙(𝑓) = 2595 logଵ(1 +




)                                                                                                                [2] 

 
which approximates the behavior of the auditory systems and allows for the better 
representation of the vocalizations for recognition.  
Figure 2 exhibits the extraction process of the MFCCs for each frame of the vocalizations. 
 

 
 
Figure 2: Feature extraction of MFCCs. 
 
3.2. Acoustic models 
 
Hidden Markov Models (HMMs) [25] are statistical finite state machines used to model 
vocalizations and often considered as the dominant classification models in human speech 
processing [1] and, more recently, bioacoustics [6]. Fundamentally, HMMs consist of the 
following elements [1]. 
 

1. output observations 𝑶 = {𝑜ଵ, 𝑜ଶ, … . , 𝑜ெ};  
2. set of states 𝛀 = {1,2,… . , 𝑁}; 
3. transition probability matrices 𝑨 = ൛𝑎ൟ; 
4. output probability matrices 𝑩 = {𝑏(𝑘)}; 
5. initial state distributions 𝝅 = {𝜋}. 

 
Collectively, the parameter set of HMMs are denoted as 𝛷 = (𝑨,𝑩, 𝝅).  
Figure 3 supplies an example 4-state HMM with single Gaussian Mixture Models (GMMs) 
underlying each state. 
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Figure 3: Example 4-state HMM. 
 
4. Results 
 
Experiments to discriminate between the 5 available species of seals were performed using 
leave-one-out cross-validation [26] on the 142 recordings in the database through the Hidden 
Markov Model Toolkit (HTK) [27]. The goals of the experiments are to determine the impact 
of frame size and step size and number of states for feature extraction and acoustic models on 
classification accuracy. 
 
Table 2 displays the classification accuracy (number of correct classifications in parentheses) 
for variations in the frame size and step size (feature extraction). 
 
Depending on the overlap between the frames of vocalizations (difference between frame size 
and step size (highlighted)), the classification accuracy ranges from 88.73%-95.77% (small 
frame sizes of 15 ms and 20 ms with relatively large overlap sizes of 9 ms–18 ms or percentages 
60.00%-90.00%) to 90.15%-93.66% (large frame sizes of 20 ms and 25 ms with relatively small 
overlap sizes of 13 ms–22 ms or percentages 52.00%-73.33%).  
 
By increasing the number of states in the HMMs from 1 state (GMM) to 20 states (HMM), the 
classification accuracy improves over 25% (36 additional correct classifications) to 95.77% 
(136/142 correct). From investigation of the frame size and step size (feature extraction) and 
number of states (acoustic models) utilizing 21 MFCC and 42 time derivative (21 delta and 21 
delta-delta) features (feature vector size 63), the discrimination of the individuals was the 
highest value at 95.77% using 15 ms frame size and 4 ms step size along with 20 states 
containing a single GMM underlining the states of the HMMs, which are frame size and step 
size that could be potentially utilized as standard analysis conditions to extract features on a 
frame-by-frame basis from each of the vocalizations of other marine mammals.  
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Table 2: Classification accuracy vs. frame size and step size. 

Accuracy 

Step Size 

2 ms 4 ms 6 ms 8 ms 10 ms 12 ms 

Frame 

Size 

15 ms 
92.96% 

(132) 

95.77% 

(136) 

93.66% 

(133) 

92.25% 

(131) 

90.14% 

(128) 

90.14% 

(128) 

20 ms 
91.55% 

(130) 

91.55% 

(130) 

88.73% 

(126) 

91.55% 

(130) 

90.85% 

(129) 

90.85% 

(129) 

25 ms 
90.14% 

(128) 

90.14% 

(128) 

83.80% 

(119) 

92.96% 

(132) 

90.85% 

(129) 

90.85% 

(129) 

30 ms 
82.39% 

(117) 

88.03% 

(125) 

92.25% 

(131) 

93.66% 

(133) 

90.14% 

(128) 

90.14% 

(128) 

 
Table 3 shows the classification accuracy for changes in the number of states (acoustic models). 
 
Table 3: Classification accuracy vs. number of states. 
 

States Correct Accuracy 

1 100 70.42% 

5 114 80.28% 

10 127 89.44% 

15 135 95.07% 

20 136 95.77% 

 
Figure 4 illustrates the classification accuracy for each of the 5 available species of the seals. 
 
Through the confusion matrix, the discrimination between the individuals was 100.00% for 
two of the five species of seals, namely the Harp Seal (HS) and Leopard Seal (LS). While the 
Ross Seal (RS) had the greatest number of misclassifications, the recordings were all classified 
as the Weddell Seal (WS) to produce a classification accuracy of 92.00%. Even though the 
Bearded Seal (BS) and Weddell Seal (WS) each had a single misclassification, the classification 
accuracy was drastically different for the two species of seals because of the availability of 
recordings: 97.06% (34/34 correct, Bearded Seal (BS)) as opposed to 50.00% (1/2 correct, 
Weddell Seal (WS)). Overall, the HMMs demonstrated the ability to accurately discriminate 
between the various 5 species of seals in the database, especially compared to chance (20.00%). 
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Figure 4: Confusion matrix for 5 available species of seals (Pinnipeds). 
 
5. Conclusion 
 
HMMs were developed and implemented for discrimination of 5 available species of seals 
from the WHOI database containing 142 recordings. The goals of the experiments were to 
determine the impact of the frame size and step size and number of states for feature 
extraction and acoustic models on classification accuracy. Through the study of the frame size 
and step size (feature extraction) and number of states (acoustic models) utilizing 21 MFCC 
and 42 times derivative (21 delta and 21 delta-delta) features (feature vector size 63), the 
discrimination of the seals achieved 95.77% using 15 ms frame size and 4 ms step size along 
with 20 states containing a single GMM underlining the states of the HMMs. For future work, 
HMMs could be applied to other marine mammals for classification and detection of 
vocalizations and species on a much more extensive database. 
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