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Abstract 
 
The paper presents an approximate method of fitting measurement points to parameterized 
arbitrary nonlinear curves described by complex equations, even implicit ones, the most 
commonly used method of least squares in general WTLS. An approximation of a linear model 
is used here, in which the laws of propagation of error and propagation of uncertainty are 
true, so that only the first derivative of the transforming function is relevant. The effectiveness 
of the method has been demonstrated in several numerical examples. The method was 
verified on several nonlinear functions using the iterative algorithm by Monte Carlo 
propagation of distribution and the classical method based on the Levenberg-Marquardt 
algorithm for nonlinear optimization.  
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1. Introduction 
 
The most commonly used in many technical sciences, in geodesy, physics, chemistry, in 
general in metrology or measurement science is the determination of linear characteristics on 
the basis of coordinates of measurement points derived from a series of measurements in the 
XOY Cartesian system. The uncertainties – standard deviations of the coordinates – are not 
important, and it is assumed that they are the same and do not affect the adjustment method, 
which is usually the minimization of the sum of squares of errors determined in the direction 
of the Y axis – the so-called OLS method. In addition, the Best Linear Unbiased Estimator is 
used to estimate the corridor around a line, resulting from the Gauss-Markov theorem as an 
estimator among the linear, unbiased estimators of the linear regression model. Such a 
solution exists in an analytical form, requiring the use of basic mathematical operations [1]. 
Taking into account the uncertainty of measurements and mutual correlations for the least 
squares method will result in the equation of the line being similar to the OLS model, but 
slightly different.  
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Similarly, the corridor of uncertainty around the straight line will change, i.e. narrow or 
widen. As a result, the arrangement of the line will depend not only on the coordinates of the 
measurement points, but also on the covariance matrix of the input quantities. Finding the 
parameters of a line in such a case is much more difficult and requires the use of various 
numerical methods, including iterative ones, requiring much more computing power and 
calculation time for a program/application running on a PC. The situation is similar for 
nonlinear curves, but the calculations become more and more complicated. 
 
In general, it can be seen that the use of different methods minimizing the sum of squares 
errors determined in different directions–the positions of the points on the curve 
corresponding to the measurement points with respect to which the errors are determined, 
are located in different configurations, taking into account the weights of individual errors, in 
the case of decreasing adjustment errors. It will lead to the convergence of different solutions 
to a single idealized curve. Therefore, the obtained parameters of the curves for different 
methods should be similar.  
 
In metrology, we most often make measurements that are almost always subject to 
uncertainties. Uncertainties are most often associated with standard deviations, which are the 
standard deviations of probability density distributions. Most often these are the dominant 
type A uncertainties derived from statistical measurements, but in general they are the 
geometric sum (resulting from convolutions) of type A uncertainty and type B uncertainty, 
which results from the dispersion of measurements resulting from non-statistical reasons. 
Determination of the uncertainty at a given measurement point, as well as and above all the 
expected value of the measurements, may involve measurements of other quantities. In this 
case, we are dealing with intermediate measurements, which in many cases leads to an 
approximate determination of the uncertainty of the initial quantity. A linear model is used 
that linearizes the total measurement function, and the output errors and uncertainties are 
appropriately transferred according to the law of propagation of error the complete 
differential method and the law of propagation of uncertainty/variance using the first partial 
derivatives of the measurement functions. Note that the law of propagation of uncertainty 
even for uncorrelated input variables usually leads to output variables that are already 
correlated.  
 
Thus, in intermediate measurements, it is practically impossible to avoid correlations between 
the output variables, which should be included in the covariance matrix. If 𝑈 is a matrix of 
covariance of input variables that can also be correlated or not, then the covariance matrix of 
the output quantities 𝑈௨௧  according to the law of propagation of uncertainty (standard 
deviations, variances) is expressed by 𝑈௨௧ = 𝐶்𝑈C, where C is the sensitivity matrix 
characterized by the first partial derivatives. As a result, on the basis of a multivariate 
Gaussian distribution with a covariance matrix, which contains the standard deviations of all 
coordinates of measurement points and mutual correlations between each two coordinates 
[2], the output covariance matrix is determined – for a simple straight line, it is the covariance 
matrix of the slope coefficient and the intercept. On this basis, the width of the uncertainty 
corridor around the line is determined for each coordinate value, half of which is the sought 
uncertainty for the fitted curve. Of course, the most accurate way of fitting is to use the 
generally correlated probability distributions for each coordinate of the measurement points 
and to determine the 𝑈 probability density distributions of the parameters of the 
curve/function to be fitted by the analytical method or the Monte Carlo method, i.e. by 
numerically generating the distributions and determining the density distribution for each 
estimated parameter of the fitted function. If the input density distributions are correlated, the 
covariance matrix must be decomposed 𝑈 Cholesky method and on samples from the 
normal Gaussian distribution determine the samples of input distributions. By determining 
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the parameter distributions of the fitting function, it is easy to estimate the expanded 
uncertainty for any value of the x coordinate in the form of an interval for the coverage of 0.95, 
which is a single element of the uncertainty corridor.  
 
The Monte Carlo method can be easily implemented to fit a polynomial function (polynomial 
of any degree) for regression y on x-only y coordinates are associated with uncertainties, at 
the same time a precise measurement of the x coordinate is performed, which is not associated 
with errors and has no associated uncertainty. Using the method of determinants, i.e. 
operations consisting of basic mathematical operations, it is possible to determine the 
probability density distributions of the parameters that make up a polynomial function [3-5]. 
Figure 1 compares the method of distribution propagation to determine the expansion interval 
at a single measurement point with n input variables x and the method of fitting the curve at 
n measurement points with coordinates in XOY Cartesian system (xi,yi) containing a vector of 
m - parameters p =[𝑝ଵ,…, 𝑝] of the considered functions f(x). In both cases, probability 
density distributions 𝑔௫ (i from 1 to n ) are generated for each single vectors of the random 
variables in the first for coordinates 𝑋 =  [𝑥ଵ,…, 𝑥] and in the second 2n random variables 
defined by vector  Z=[𝑧ଵ,…, 𝑧ଶ] =  [𝑥ଵ,…, 𝑥, 𝑦ଵ,…, 𝑦] and distribution 𝑔௭ (i from 1 to n). 
On this basis, from the relevant measurement equations for the first case, the density 
distribution of the output variable of defined function with known parameters is generated, 
and hence the expected value and coverage interval for 0.95 probability in the first case 
described in the document JCGM 101:2008  Evaluation of measurement data—Supplement 1 
to the “Guide to the expression of uncertainty in measurement”—Propagation of distributions 
using a Monte Carlo method.  
 

 
 
Figure 1: Comparison of monte carlo method for cover interval estimation and cover corridor of 
adjustment curve. 
 
In the second case of fitting the nonlinear curve to the measurement points the corresponding 
function is composed only by type of standard library mathematical function but with 
unknown parameters, so it is necessary to determine the probability density 
distributions 𝑔  of all parameters described by vector p of the function using the 
minimization of the dimensionless criterion function described by the equation for WTLS least 
squares method: 
 
𝜙(∆𝑍, 𝑝) = ∆𝑍்𝑈

ିଵ∆𝑍 → 𝑚𝑖𝑛                                                   (1) 
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where the adjustment error vector ∆𝑍= Z−𝑍,and the vector 𝑍 = [𝑧ଵ,…, 
𝑧ଶ] =  [𝑥ଵ,…, 𝑥, 𝑦ଵ,…, 𝑦] contains the coordinates of the points lying on the fitted 
curve - for the explicit function f:   𝑌 = 𝑓( 𝑋 , 𝑝) where 𝑋 = [𝑥ଵ,…, 𝑥]், 𝑌 = [𝑦ଵ,…, 𝑦]் 
and in general a full covariance symmetric matrix 𝑈 taking into account autocorrelations 
within X and Y and cross-correlations of X and Y. The covariance matrix 𝑈 and its inverse 
are denoted by covariance matrixes 𝑈, 𝑈, 𝑈  size n x n form: 
 

𝑈 = 
𝑈 𝑈

𝑈
் 𝑈

൨ ,    𝑈
ିଵ = 

𝑉ଵ 𝑉ଷ

𝑉ଷ
் 𝑉ଶ

൨                                      (2) 

 
where, in order to simplify mathematical operations, the designations of the matrix 𝑉ଵ, 
𝑉ଶ,  and 𝑉ଷ sizes n x n were introduced, forming an inverse matrix to the one 𝑈 denoted by 
 𝑈

ିଵ. 
 
Finally, the uncertainty corridor defined by the coverage intervals for any x is determined 
from the probability density distribution of the output variable y for this x and the determined 
probability density distributions 𝑔 for all parameters of the vector p.  
 
Unfortunately, in most cases this type of solution cannot be implemented directly using basic 
mathematical operators, because each output sample of function parameters is determined 
from more complicated formulas, sometimes numerical algorithms solving complex 
nonlinear equations or even implicit equations [6-11]. Therefore, an approximate method that 
does not require such complex algorithms is proposed below. A allows you to adjust the 
parameters of the curve and its corridor and uncertainties based on the solution for a straight 
line. 
 
The task of calculations of parameters of the fitted curve is to minimize the defined criterion 
function (1) and in general to determine the m-element vector of the parameters p- and n-
element vector of coordinates of the points lying on the fitted curve, therefore it is enough to 
determine the vector. 𝑋, this gives in total n+m independent variables. This task, taking into 
account the computing capabilities of modern computers with a large number of 
measurement points, cannot still be solved by free search of all independent variables. 
Therefore, an appropriate algorithm of classical methods based on numerical determination 
of the gradient of a multidimensional function should be used [6-9]. 
 
In the following paper, we will present an approximate method of reducing the number of 
n+m variables affecting the criterion function by determining its local minimum for the 
vector 𝑋 , to the number of m parameters, two of which are dependent on each other. This 
greatly simplifies the calculation, because with a small number of parameters of the matched 
nonlinear function, it can be minimized by freely searching the m-1 value, monitoring the area 
of the local minimum of criterial function. In the examples given, the number m=3 (m-1=2) for 
fitting catenoid curve, m=5 (m-1=4) for fitting ellipse and m=3 (m-1=2) for parabolic curve and 
m=4 (m-1=3) for sum of exponent and sine functions. 
 
To compare the results of calculations performed for the same input data e.g. coordinates of 
measurement points associated with uncertainties, for proposed approximate method, the 
classical gradient method was used, based on the Levenberg-Marquardt iterative algorithms 
used to solve non-linear least squares problems which interpolates between the Gauss–
Newton algorithm and the method of gradient descent, starting with a vector of size n+m of 
initial input data, performing numerical calculation of the gradient of a multivariate function 
using the numerically determined Hessian matrix [8,9]. The algorithm is implemented in the 
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environment R using standard library function. The calculation for Levenberg-Marguardt 
method was made using the method implemented on the website [12] after installing the 
Pracma and Matlib packages. 
 
2. Approximate Method Using Straight Line Fitting 
 
As we know, in the case of fitting a straight line 𝑦 = 𝑎𝑥 + 𝑏, the condition of minimization of 
the criterion function due to the positions of the selected points on the fitted line with respect 
to which the misfit errors are calculated, leads to the use of the effective covariance symmetric 
matrix for regression y on x, and finally to make the criterion function quasi-quadratic 
dependent only on the slope coefficient a or depend only on intercept b. As a result, we obtain 
quasi-parabolic characteristics of the criterion function depending on one of the variables, i.e. 
the slope coefficient or the intercept b. In order to find the global minimum or one, one of the 
functions should be numerically examined by calculating for example in the assumed series 
of values of the slope coefficient [13].  
 
For a straight-line fit, the local minimum for the effective covariance matrix is related to the 
matrix β [13,14] in general nonsymmetric. 
 

1
23

T
31 ))((  VVVVβ aa

 or  
)()( 23

1T
31

1 VVVVβ aa  

                                     (3) 

 
Then the dependencies are true, and the errors propagate in the following way   𝛥𝑌 = 𝛽𝛥𝑋 and 
𝛥𝑋 = 𝛽ିଵ𝛥𝑌. The equations are true for any and for the minimizing criterion function. Hence, 
for example, for the diagonal elements of the matrix 𝑈 when all uncertainties 𝑢(𝑥) are close 
to zero the errors in their entirety are determined in the y direction, because 𝑢(𝑥) →

0 then 𝑉ଵ → ∞ and then 𝛽ିଵ → 0 and Δ𝑋 → 0 .This applies not only to a straight line, but to any 
kind of nonlinear curve that is fitted. If the uncertainties for the x-coordinate measurements 
are negligible, the adjustment errors are determined only in the y-direction. This fact can be 
used when testing the accuracy of our fit, because by setting very small uncertainties for the 
x coordinate for curves described by polynomials, we can check whether they are consistent 
with analytical solutions. In this case for fitting any nonlinear functions the Levenberg-
Marquardt iterative algorithm solves only m nonlinear equations for parameters p. 
 
2.1. The least squares method optimalization equation 
 
The covariance matrix 𝑼𝒁 of size 2 n x 2 n is given by: 

𝑈 = 

𝑢௭భ
ଶ … 𝜌௭భ௭మ

𝑢௭ଵ𝑢௭మ

… … …
𝜌௭భ௭మ

𝑢௭భ
𝑢௭మ

… 𝑢௭మ
ଶ

 = 

𝑢௭భ
… 0

… … …
0 . . 𝑢௭మ

൩ 𝑅 

𝑢௭భ
… 0

… … …
0 … 𝑢௭మ

൩     (4) 

 

where correlator matrix 𝑅 = 

1 … 𝜌௭భ௭మ

… … …
𝜌௭భ௭మ

… 1
൩ and 𝜌௭௭ೕ

 is the correlation coefficients between 

the coordinates of the 𝑧  and 𝑧, and i and 𝑗 = 1, … ,2𝑛.  
  
From (1) and (4) and if we assume [𝑅ିଵ] = [𝑄] , then the criterial function is given by: 
 

 𝜙(𝛥𝒁, 𝒑) = 
∆𝑧ଵ

…
∆𝑧ଶ

൩

்

 𝑼𝒁
ି𝟏 

∆𝑧ଵ

…
∆𝑧ଶ

൩ = ൦

∆௭భ

௨భ
… 0

… … …

0 . .
∆௭మ

௨మ

൪ 𝑹ି𝟏 ൦

∆௭భ

௨భ
… 0

… … …

0 . .
∆௭మ

௨మ

൪ = ∑ ∑ 𝑄
ୀଶ
ୀଵ

ୀଶ
ୀଵ

∆௭

௨
 

∆௭ೕ

௨ೕ
            (5) 
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Multiplying and dividing each of the elements ∆௭

௨
 by the same nonzero values does not change 

the value. If these values are the values of the first derivatives of the transforming functions 
at the measured points, then the criterion function is given a new interpretation 𝜙(𝛥𝑍, 𝑝). See 
Appendix A to find the types of the least squares methods dependent on co-factors 𝑄 . 
 
3. The Proposed Approximation Method 
 
By fitting a nonlinear function with separable variables x and y, which can be written as: 
 
𝜓(𝑦, 𝑝) = 𝐴𝜉(𝑥, 𝑝) + 𝐵                                         (6) 

 
where A-multiplication coefficient (slope of straight line in new coordinates 𝜉  and 𝜓), B-
additive coefficient (intercept of straight line in new coordinates 𝜉  and 𝜓) then the criterial 
function can be transformed using function 𝜓  and 𝜉 and also based on the: 
 
The law of propagation of error 

𝛥𝜓 ≈ 𝜓ᇱ(𝑦, 𝒑)𝛥𝑦  and 𝛥𝜉 ≈ 𝜉ᇱ(𝑥, 𝒑)𝛥𝑥                                      (7) 
 
The law of propagation of uncertainty (LPU) 
 
𝑢(𝜓) ≈ |𝜓ᇱ(𝑦, 𝑝)|𝑢(𝑦)  and 𝑢(𝜉) ≈ |𝜉ᇱ(𝑥, 𝑝)|𝑢(𝑥)                                       (8) 

 
can be transformed to the form 
 

(∆𝑍, 𝑝) = ∆𝑍்𝑈௭
ିଵ∆𝑍 ≈ [Δ𝜉 , Δ𝛹] ቈ

𝑈క 𝑈క అ

𝑈క అ
் 𝑈అ



ିଵ

ቂ
Δ𝜉 
Δ𝛹

ቃ → min                                         (9) 

 
where covariance matrix after transforming to the new coordinates became: 
 

ቈ
𝑈క 𝑈క అ

𝑈క అ
் 𝑈అ

 = 
𝜉′(𝑥ଵ, 𝑝) … 0

… … …
0 … 𝜓′(𝑦, 𝑝)

൩ 
𝑈 𝑈

𝑈
் 𝑈

൨ 
𝜉′(𝑥ଵ, 𝑝) … 0

… … …
0 … 𝜓′(𝑦, 𝑝)

൩                                   (9a) 

 
The covariances matrixes 𝑈క  , 𝑈అ and 𝑈క అ  size n x n after the coordinate’s transformation 
correspond to the covariance matrixes before the transformation  𝑈, 𝑈, 𝑈. 
 
If we are dealing with negative values of the first derivatives, then on non-diagonal elements 
of covariance matrix in new coordinates system there may be a change in the sign of 
correlation coefficients because uncertainties are always positive.  
 
Mathematically, the search for the minimum means that below conditions are satisfied: 
 
∇క

𝜙 =
డథ

డక
= 0 ,    

డథ

డ
= 0, and 

డథ

డ
= 0                                        (10a, b, c) 

 
The first condition is analytically solvable and leads to obtaining a local minimum for the 
inverse effective covariance matrix – see Appendix B to find the proper formulas of the matrix: 
 
𝑈

ିଵ =  𝑉ଶଶ − (𝑉ଵଷ
் + 𝐴𝑉ଶଶ)𝑈ିଵ(𝑉ଵଷ + 𝐴𝑉ଶଶ)                                            (11) 
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where symmetric matrix  𝑈 = 𝑉ଵଵ + 𝐴(𝑉ଵଷ
் + 𝑉ଵଷ) + 𝐴ଶ𝑉ଶଶ   and inverse covariance matrix after 

transformation to the new coordinates is   ቈ
𝑈క 𝑈క అ

𝑈క అ
் 𝑈అ



ିଵ

= 
𝑉ଵଵ 𝑉ଵଷ

𝑉ଵଷ
் 𝑉ଶଶ

൨. Denoted by  𝑉ଵଵ, 𝑉ଵଷ and  

𝑉ଶଶ  covariance matrixes size n x  will create the  inverse matrix to the covariance matrix 
obtained after the coordinates transformation. 
 
The value of the criterion function is determined using the formula: 
 

𝜙టక(𝐴, 𝑝) = 𝐴𝟐 ൬𝑆కక −
ௌ 

మ

ௌ
൰ +   2 ቀ

ௌௌഗ

ௌ
− 𝑆కటቁ 𝐴 + 𝑆టట −

ௌ ഗ
మ

ௌ
                                      (12) 

 

where axillary parameters which depend on slope coefficient A are: 𝑆 = 1் 𝑈
ିଵ 1 =

∑ ∑ [ 𝑢௬
ିଵ ] > 0

ୀଵ

ୀଵ ,   𝑆క = 𝜉்𝑈

ିଵ 1 = 1்𝑈
ିଵ 𝜉,     𝑆కక = 𝜉்𝑈

ିଵ 𝜉, 𝑆ట = 𝛹்𝑈
ିଵ 1 =

1்𝑈
ିଵ 𝛹,   𝑆టట = 𝛹்𝑈

ିଵ  𝜉,   𝑆కట = 𝜉்𝑈
ିଵ 𝛹 = 𝛹்𝑈

ିଵ 𝜉 and 𝐵 = ( 𝑆ట − 𝐴 𝑆క)/𝑆.  

 
On the basis of the relation (12) we can conclude that the dependence of the criterion function 
on the slope coefficient A (also of the free term B) is quasi-quadratic and this relation for each 
vector p has a quasi-vertex constituting the local minimum. Therefore, by 
increasing/decrementing the parameter vector p with the step Δp, we search the criteria 
function so that the local minimum reaches the value of the global one. 
 
The standard/expanded uncertainty are defined for the uncertainty corridor around the 
straight line described by (6) follows from the law of propagation of uncertainty and the using 
of relationships 𝑢௬ = 𝑢ట/|𝜓ᇱ|  are: 
 
𝑢௬ ≈ ඥ𝑢ଶ(𝐴)𝜉ଶ + 2𝜉𝑢(𝐴)𝑢(𝐵)𝜌 + 𝑢ଶ(𝐵)/|𝜓ᇱ|     and  𝑈௬ = 𝑡

ଵି
ഀ

మ
,ିଶ

𝑢௬                (13a,b) 

 
where u(A) and u(B) are uncertainties  of slope and intercept and 𝜌  is correlation coefficient 
between A and B, 𝑢௬ is standard uncertainty and 𝑈௬ is expanded uncertainty after adjustment 
and 𝑡ଵି

ഀ

మ
,ିଶ is the coefficient ( inverse of distribution) from t-Student distribution for n-2 

degree of freedom and 𝛼 = 0.05 for coverage 95 %. 
 
In this way we assume that the uncertainty of parameter vector is close to zero 𝑢(𝒑) ≈ 0 at the 
beginning except of after adjustment curve the uncertainties u(A) and u(B) for two parameters 
A and B and the correlation coefficient between them   𝜌 , on which the width of the interval 
depends coverage corridor. However, these two parameters acquire uncertainties from the 
coordinates of the measurement points only after fitting a nonlinear curve using the law of 
propagation of uncertainty for the determined covariance matrix after the coordinate 
transformation. The problem can be solved for example in EXCEL workbook, R or Matlab 
environment.  We have only area for A and p vector for minimalization. It means we have m-
1 dimensional space for optimalization – A and B are functionally related and are part of p. 
Matching consists in taking a series of parameter values, 𝐴 for example with a step Δ e.g.. 𝐴 =

𝐴 + (𝑗 − 1)𝛥 and j =1, …, m, whereby 𝐴 is the initial value assumed in such a way that the 
determined values of the criterion function 𝜙క௭൫𝐴൯ make visible the local minimum. At any 
step we obligatorily determine the matrix 𝑈

ିଵ  which depends on the 𝐴 . Parameter 𝑝 must 
be accepted in advance. Then, by changing its value from 𝑝  to 𝑝௫ while respecting the 
local minimum  𝜙క௭ ൫𝐴൯ the criterion function shall be minimized in such a way as to 
obtain a global minimum 𝜙క௭ ൫𝐴൯. During this process, we can change both the value 
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of 𝐴 as well as the step 𝛥, so that on the chart 𝜙క௭(𝐴) a local minimum has appeared.  In each 
step leading to minimization, there is a relationship   𝐵 = ( 𝑆 ట − 𝐴 𝑆క)/𝑆. 
 
Compared to gradient methods, e.g. the Levenberg-Marquardt (L-M) where we do not 
perform coordinate transformations, the criterion function is numerically differentiable by m 
– parameters and by n coordinates of the vector Xp , which exhaust the domain of the function.  
The criterion function for the gradient method in general form is always greater than the 
criterion function after the transformation of coordinates into a linear relationship due to the 
selection of the effective covariance matrix: 𝜙௭(𝛥𝑍, 𝑝) ≥ 𝜙௭(𝑝)  ≈ 𝜙టక(𝐴, 𝑝) . 
 
4. Examples of Fitting a Curve to Measurement Points 
 
Three examples of fitting a nonlinear curve to measurement points are presented below.  The 
first concerns the shape of the high-voltage overhead line. The second is to determine the 
semi-axis of the ellipse, and the third is to determine the electronic system consisting of a 
diode and a resistor. 

 
4.1 Fitting catenoid curve 
 
Measurements of high voltage catenoid lines [15] were performed in 10 measurement points, 
the data of which are presented in Table 1 by Laser Rangefinder with standard uncertainty 
0.01 m. 
 
Tabel 1a: Coordinates of measurement points for measurements of high voltage catenoid lines. 
 

x [m] 0 50 60 80 100 110 140 160 180 220 

y [m] 177.29 173.94 173.63 173.36 173.49 173.94 175 177.2 179.53 185.64 

 
Looking for parameters A=H/w, p=L, and B= hmin determined for the equation of the high-level 
overhead line voltage described by the catenoid curve: 
 
𝑦 =

ு

௪
[𝑐𝑜𝑠ℎ

௪

ு
(𝑥 − 𝐿) −1] + ℎ                                    (14) 

 
where: H−tension of the conductor at the lowest point of the conduit, w−dead weight of the 
cable, x, y−wire coordinates, L-distance of the first column from the x coordinate 
corresponding to the lowest overhang, i.e. the height hmin. 
 
In order to use the least squares method for uncorrelated variables, we minimize the 
criterion function given by: 
 
𝜙௫௬(𝛥𝑥, 𝛥𝑦, 𝑝) = ∑

௱௫
మ

௨మ(௫)


ୀଵ +

௱௬
మ

௨మ(௬)
→ min                          (15) 

 
That 𝜙௫௬(𝛥𝑥, 𝛥𝑦, 𝑝) can be estimated by   𝜙క௬(𝛥𝜉, 𝛥𝑦, 𝑝). 
 

𝜙క௬(𝛥𝜉, 𝛥𝑦, 𝑝) = ∑
௱క

మ

௨మ(క)


ୀଵ +

௱௬
మ

௨మ(௬)
→ min                                (16) 

 
Where 𝜉(𝑥) = 𝑐𝑜𝑠ℎ൫(𝑥 − 𝑝)/𝐴൯ and uncertainty of new coordinates are: 𝑢(𝜉) =

|𝑠𝑖𝑛ℎ ቀ
(௫ି)


ቁ | 𝑢(𝑥)/𝐴.  In such a representation of coefficients A, B and parameter p, the 
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coordinates of the measurement points change with the change of A, but the condition (10a) 
is satisfied by the inverted effective covariance matrix and equation (6) also is satisfied. 
 
As a result, the following characteristics of the criterion function are obtained with visible 
global minima- Figure 2a in dependence on A and 2b in dependence on B.    
 

 
 
Figure 2: Characteristics of the criterial function for non-correlated coordinates: a) depend on A and 
b) depend on B. 
 c) Measurement points and fitting curve in XOY cartesian system, d) Expanded uncertainty for 
correlated and noncorrelated coordinates. 
 
The minimization for the L-M method concerned n+m=13 parameters. The results of fitting 
parameters for both methods are presented in Table 1b) below. 
 
Table 1b: The results of numerical calculations for fitting catenoid curve. 
 

 A L=p H 𝝓𝝃𝒚𝐦𝐢𝐧_𝒈𝒍𝒐𝒃𝒂𝒍 

Type of 

method 

without 

correlati

on 

with 

correlati

on 0.3 

without 

correlati

on 

with 

correlati

on 0.3 

without 

correlati

on 

with 

correlati

on 0.3 

without 

correlati

on 

with 

correlati

on 0.3 

Proposed 

approxima

te method 

787.66 

± (0,7) 

787.12 

± (0,7) 
81 81 

173.25 

± (0,1) 

173.25 

± (0,1) 
2915.38 3037.94 

Levenberg

-

Marguardt 

method 

787.58 787.1 81.01 80.96 173.25 173.25 2913.73 3038.83 

 
The fitted curve with 10 input points is presented in figure 1c). The expanded uncertainty is 
estimated from the parameters of standard uncertainties u(A) and u(B) and correlation 
coefficient  𝜌 which are determined by numerically differentiation of solutions for A and B 
as a linear dependence of all coordinates and using matrix law of propagation of uncertainty. 
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For the Levenberg-Marguardt method, correlations were obtained by modifying the criterion 
function, i.e. the coefficient on the diagonal of the matrix inverse to the correlator matrix–a 
coefficient of about 1.099 and adding 10 mixed elements with a coefficient of about 0.66. 
  
The results of adjustment parameters indicate differences at a level not exceeding 0.01% for 
the values of parameters–there is a maximum difference of 0.06% in the criterion function for 
uncorrelated coordinates.  
 
The characteristic of expanded uncertainty is presented in figure 1d). The expanded 
uncertainty is greater than 0.007 m and less than 0.019 m in whole range. For the uncorrelated 
coordinates 𝑥  and 𝑦  is slightly higher than for the correlated in the entire studied range. 
This difference does not exceed 0.001 m for x=220 m. 
. 
4.2 Fitting the ellipse to the measuring points  
 
A cylinder with an elliptical cross-section was measured with a coordinate-measuring 
machine (CMM). The following coordinates were obtained: 10 points of the boundary surface 
in the cross-section plane. The measurements coordinates are included in table 2. 
 
Table 2: Measured coordinates of the elliptical cross-section object under study. 
 

x’[mm] 29.19 34.55 35.75 36.56 31.21 26.18 24.53 19.54 23.96 27.15 

y’[mm] 12.91 15.33 15.46 14.11 9.71 11.36 10.39 5.16 5.78 7.26 

 
In the coordinate system related to the center of the ellipse justified with respect to the semi-
axis 𝜆௫, 𝜆௬  the equation of the ellipse is as follows: 
 
௫మ

ఒೣ
మ +

௬మ

ఒ
మ = 1                             (17) 

 
The nonlinear elliptic curve was measured in n=10 measurement points–generated from the 
nominal curve with absolute errors of coordinates not exceeding +/-0.1. The standard 
uncertainty of the measuring points is 0.01 mm for both coordinates. 
 
The nominal half-axis is:  𝜆௫=2, 𝜆௬=10 and ellipse is rotated by an angle α=60 ° and offset   r=30 
mm for angle φ=20°. By performing successive rotations and translations of measurement 
points, equations for coordinates are obtained: 
 
𝑥ᇱ = 𝑥𝑐𝑜𝑠𝛼 − 𝑦 𝑠𝑖𝑛𝛼 + 𝑟𝑐𝑜𝑠φ    𝑦ᇱ = 𝑥𝑠𝑖𝑛𝛼 + 𝑦𝑐𝑜𝑠𝛼 + 𝑟𝑠𝑖𝑛φ                                   (18) 

 
In order to obtain the coordinates satisfying the ellipse equation, the following operations 
should be performed: 
 
𝑥ᇱ − 𝑟𝑐𝑜𝑠φ = 𝑥𝑐𝑜𝑠𝛼 − 𝑦 𝑠𝑖𝑛𝛼 ,   𝑦ᇱ − 𝑟𝑠𝑖𝑛φ = 𝑥𝑠𝑖𝑛𝛼 + 𝑦𝑐𝑜𝑠𝛼                                          (19a,b) 
 
And from here  
 

൜
𝑥 = (𝑥ᇱ − 𝑟𝑐𝑜𝑠φ)𝑐𝑜𝑠α + (𝑦ᇱ − 𝑟𝑠𝑖𝑛φ)𝑠𝑖𝑛𝛼

    𝑦 = −(𝑥ᇱ − 𝑟𝑐𝑜𝑠φ)sinα + (𝑦ᇱ − 𝑟𝑠𝑖𝑛φ)𝑐𝑜𝑠𝛼
                                     (20a,b) 
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It is for these coordinates that we swap variables: 𝜓(𝑦, 𝑝) = 𝑦ଶ ,  𝜉( 𝑥, 𝑝) =  𝑥ଶ  whereas 𝑝 is a 
three-dimensional vector 𝑝 = [𝑟, 𝛼, 𝜑]  which components will need to be matched. 
 
The ellipse equation can be replaced by a linear equation 
 
𝜓(𝑦, 𝑝) = 𝐴𝜉(𝑥, 𝑝) + 𝐵                                 (21) 
      

where  𝐴 = −
ఒ

మ

ఒೣ
మ   oraz  𝐵 = 𝜆௬

ଶ   and the square of uncertainties of new coordinates for 

noncorrelated   measurements of coordinates   𝑥
ᇱ and  𝑦

ᇱ are given: 
 
𝑢ଶ(𝜉) = 4((𝑥  ᇱ − 𝑟𝑐𝑜𝑠φ)𝑐𝑜𝑠α + (𝑦

ᇱ − 𝑟𝑠𝑖𝑛φ)𝑠𝑖𝑛𝛼)ଶ(𝑢ଶ(𝑥
ᇱ) cosଶ α + 𝑢ଶ(𝑦

ᇱ) sinଶ α), 𝑢ଶ(𝜓) =
4((𝑥  ᇱ − 𝑟𝑐𝑜𝑠φ)𝑐𝑜𝑠α + (𝑦

ᇱ − 𝑟𝑠𝑖𝑛φ)𝑠𝑖𝑛𝛼)ଶ(𝑢ଶ(𝑥
ᇱ) sinଶ α + 𝑢ଶ(𝑦

ᇱ) cosଶ α)                     (22a, b) 

 
with correlation coefficients 𝜌క ట 

 for every pair 𝜉  and  𝜓  : 
 
𝜌క ట 

= 2𝑠𝑖𝑛2α((𝑥  ᇱ − 𝑟𝑐𝑜𝑠φ)𝑐𝑜𝑠α + (𝑦
ᇱ − 𝑟𝑠𝑖𝑛φ)𝑠𝑖𝑛𝛼)(−(𝑥  ᇱ − 𝑟𝑐𝑜𝑠φ)sinα + (𝑦

ᇱ  −

𝑟𝑠𝑖𝑛φ)𝑐𝑜𝑠𝛼)/ (𝑢(𝜉) 𝑢(𝜓))                                          (22c) 

 

                         
 
Figure 3: Measured points and fitted ellipse. 
 
The result of the match is the following estimated values 𝐴  = -24.4,  𝐵  = 
100,32, 𝑝 = ൣ𝑟,.𝛼 , 𝜑 . ൧ = [29.99 mm, 59.81° , 19.845°,]. Values of fitted semi-axes 
with standard uncertainties of the ellipse are: 𝜆௫  = 2.02 mm ± (0.1 mm) and   𝜆௬= 10.03 mm ± 
(0.2 mm)  at global minimum of criterial function 𝜙కట   ≈ 321.81.  Figure 3 shows the 
measured  points and the fitted ellipse in the XOY coordinate system. 
 
In the case of the Levenberg-Marguardt method with numerical determination of the gradient, 
it failed to start. Many tests were made, even for an ellipse positioned in the center of the 
coordinate system. Unfortunately, the iterations ended in failure. This is a kind of flaw of the 
method, the initial vector of all variables involved in the minimization was not selected 
automatically. Therefore, it was not possible to compare the results. 
 
4.3 Example of implicit function fitting 

 
Nonlinear curve fitting to the measurement points, a series circuit of the connection of the 
semiconductor silicon diode with the internal resistance R powered by a constant voltage 
power supply is considered. In the arrangement according to figure 4 current is measured I 
ammeter with relative uncertainty  𝛿(𝐼) = 1% and voltage U with relative uncertainty 𝛿(𝑈) =
1%.  
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Figure 4: The measuring system for the determination of non-linear matched characteristics U(I) to 
the measuring points. 
 
The diode is characterized by the following exponential dependence of current on the voltage 
measured at its terminals – the Shockley equation: 

 
𝐼 = 𝐼 ቀexp ቀ



ఌ
ቁ − 1ቁ                                      (23) 

 
where 𝐼 − saturation current, ε  − constant characteristic of a particular diode and operating 
temperature, diode voltage: 𝑈ௗ =  𝜀 ln (

ூ

ூబ
+ 1). 

 
From Kirchoff's second equation it follows that the measured voltage on the circuit of the 
series connection of the internal resistance of the diode and the voltage across the diode and 
the current flowing through the circuit is: 
 
𝐼𝑅 + 𝜀 ln ቀ

ூ

ூబ
+ 1ቁ = 𝑈                                 (24) 

 
Equation (24) is an implicit function  ℎ(𝐼, 𝑈) = 𝐼𝑅 + ln ቀ

ூ

ூబ
+ 1ቁ − 𝑈 = 0 because it is not 

possible to find analytically the relationship of current I as a function of voltage U.  
 
The values of the measured voltage and current at ten measuring points n=10 of the system 
from figure 4 are given in table 3. Nominally parameters of such circuits are: 𝜀  = 26 mV, R=1 
k Ω, 𝐼 = 1.5 pA. 
 
Table 3: The coordinates of the measured points for nonlinear curve given by measurement site–figure 
4. 
 

I (µA) 3.01 6.32 14.48 34.76 48.06 64.97 89.01 123.21 165.1 225.9 

U(mV) 378.01 406.32 438.48 484.76 508.06 534.97 569.01 613.21 665.1 735.9 

 

From the current and voltage measurements, we determine the resistance 𝑅, parameter 𝜀 and 
saturation current 𝐼 by adjusting the nonlinear characteristic described by (24) using the 
method of weighted total least squares WTLS assuming no correlation between the measured 
quantities. For this purpose, we use the following substitution, which will allow us to fit both 
measured quantities into a straight line:   

 
𝜓 = ℎ(𝐼, 𝑈) =



ூ
  and   𝜓 = 𝐴𝜉 + 𝐵                                            (25a, b) 
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where: A= 𝜀, 𝐵 = 𝑅 and  𝑝 = 𝐼 ,   𝜉 =
ଵ

ூ
ln ቀ

ூ


+ 1ቁ. Thus, the measured values are transformed 

into new coordinates in the system 𝜓  = 𝑈/𝐼 and 𝜉(𝐼) = 𝑙𝑛(𝐼/𝑝 + 1)/𝐼. After such a 
transformation, the least squares method will be used de facto as a match of the resistance of 
the system described by 𝜓 ,  and not as a match of voltages as a function of the flowing current 
in the system under consideration. 
 
Both new coordinates of   (𝜉, 𝜓)  each point, due to their dependence on the measured current 
, I, are correlated with a positive non-zero correlation coefficient resulting from equal relative 
uncertainties 𝜌௭క

=
ଵ

√ଶ
  because δ(I)=δ(U)=1 %. The uncertainty of the new coordinate can be 

estimated from the law of propagation of uncertainty, using its first derivative 𝜉ᇱ(𝐼). So, 
𝑢൫𝜉(𝐼)൯ = |

ଵ

ூା
−

ଵ

ூ
ln ቀ

ூ


+ 1ቁ |𝛿(𝐼)  and uncertainty of variable 𝜓  follows from this law and is 

equal: 
 

𝑢(𝜓) =


ூ
 ට൫𝛿(𝑈)൯

ଶ
+ ൫𝛿(𝐼)൯

ଶ
                               (26) 

 
Vectors 𝝃 = [𝜉ଵ, … , 𝜉]் and 𝜓 = [𝜓ଵ, … , 𝜓]்contain the coordinates of the survey points after 
the transformation. When coordinates are correlated, the diagonal inverse matrix is given by 
(B.4)– after transformation the correlation coefficient became positive because of 𝜉ᇱ(𝐼) < 0. 
 The fitted diode and resistor parameters are: 𝐴 = 𝜀 = 26.45 mV ± (0,27 mV), 

 𝐵  =R=1.089 kΩ ±(0,057 kΩ),  𝑝 = 𝐼 = 1.73 pA  at  𝜙కந ≈ 3.24. As you can 
see, they are close to nominal values. 
 
In this case, it was also not possible to initiate numerical iterations with the determination of 
a multidimensional gradient for the Levenberg-Marquardt method. Here it was probably a 
problem of one of the parameters 𝐼, which was below the value 10ିହ  in comparison to the 
other parametrs, which caused problems with numerical differentiation. 
 

5. Verification of the Method  
 
The verification of the approximate method was performed for two nonlinear functions: the 
quadratic function for which the parameter fit was performed, and the expanded uncertainty 
interval was determined, and the nonlinear function three described in the position [16] in 
which only the parameters fit was performed. 
 
5.1 Example of adjustment to the quadratic function 
 
The approximate method of fitting the nonlinear function to the measurement points was 
verified on the quadratic function described by the equation (2): 
 
𝑓(𝑥) = 𝑎ଶ𝑥2+𝑎ଵ𝑥 + 𝑎                                               (27) 

 
where the nominal values are: a2 =0,133 a1=0,04 and a0=1. The coordinates of the simulation 
points are included in the table [4] below: 
 
Table 4: Input data of coordinates x and y for quadratic function. 
 
x 1 2 3 4 5 6 7 8 9 10 

y 1.14 1.72 2.14 3.26 4.66 5.71 6.83 10.19 12.50 13.64 
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It was assumed that the simulation measurements were made in four cases: with constant 
standard absolute uncertainties 𝑢(𝑥) = 0.08 and 𝑢(𝑦) = 0.17 and also with constant 
standard relative uncertainties  𝛿(𝑥) = 1 %  and  𝛿(𝑦) = 5 %   also  𝛿(𝑥) = 2 %  and  𝛿(𝑦) =
0.5 % and  𝛿(𝑥) = 0 %  and  𝛿(𝑦) = 2 %. 
 
In order to use the Monte Carlo method for the propagation of x and y coordinate 
distributions, the equation of zero gradient over coordinates was partially solved analytically  
𝑥 using formulas for the root of the equation of the third degree. In this way, we will be able 
to use analytical formulas contained in random variable symbols containing a series of 
samples processed directly in R or Matlab environments. 
 
The form of the criterion function for its minimization for uncorrelated variables is as follows 
 

𝜙൫𝒙𝒑൯ = ∑
(௫ି௫)మ

௨మ(௫)


ୀଵ +

((௫)ି௬)మ

௨మ(௬)
                                    (28) 

 
A gradient of the criterion function in the n-dimensional coordinate space 𝑥 conditions the 
achievement of the minimum function 𝜙൫𝒙𝒑൯  when: 
 
∇𝒙𝒑

𝜙൫𝒙𝒑൯ = 0                                                                                                                    (29) 

 
The above condition leads to the equations of the third degree for every 𝑥: 
 

𝑥
ଷ +

ଷభ 

ଶమ
𝑥

ଶ + ቀ
బି௬

మ
+

భ
మ

ଶమ
మ +

௨మ(௬)

ଶమ
మ௨మ(௫)

ቁ 𝑥 +  
భ(బି௬)ି

ೣೠమ൫൯

ೠమ൫ೣ൯

ଶమ
మ = 0                         (30) 

 
Which can be transformed to the equation 𝑡ଷ + 𝑃𝑡 + 𝑄 = 0, where 𝑡 = 𝑥 −

భ 

ଶమ
  and  P, and Q 

are coefficients obtained from (30). The Monte Carlo method was applied to 106 samples 
drawn from the normal distribution for every both xi coordinates and yi measurement points, 
while the solution for the least squares method was carried out iteratively, i.e.  the initial 
values of a2, a1  and a0 were assumed in order to use the analytical solution with one real root 

equal  t=ට−
ொ

ଶ
+ ඥ𝑃ଷ/27 + 𝑄ଶ/4

య
+ ට−

ொ

ଶ
− ඥ𝑃ଷ/27 + 𝑄ଶ/4

య
  for the equation of the third degree (30)  

and thus it is easy to  determine the probability density distributions of  𝑥. In the final part 
of the determinant method (it is not possible to use library function in R for determinant), we 
need to solve a system of equations: 
 

⎩
⎪
⎨

⎪
⎧∑

మ௫
మ ାభ௫ାబ  

௨మ(௬)
     = ∑

௬

௨మ(௬)


ୀଵ


ୀଵ

∑ 𝑥

మ௫
మ ାభ௫ାబ 

௨మ(௬)
= ∑

௫௬

௨మ(௬)


ୀଵ


ୀଵ

∑ 𝑥
ଶ మ௫

మ ାభ௫ାబ 

௨మ(௬)
= ∑

௫
మ ௬

௨మ(௬)


ୀଵ


ୀଵ

                                      (31)

  
 
The output probability density distributions are obtained for  𝑎ଶ, 𝑎ଵ, and  𝑎 .  These 
distributions should be inserted into (30) and repeated iteratively until the output 
distributions of  𝑎ଶ, 𝑎ଵ, and  𝑎 are consistent with the input distributions. Euclide’s distance 
of   mean values of distributions between iteration for  𝑎ଶ, 𝑎ଵ, and  𝑎  less then 10ିହ finishes 
iterations. 
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For the new approximate proposed method, a coordinate transformation has been used: x  to 

the new function 𝜉(𝑥, 𝑝) = (𝑥 + 𝑝)ଶ and 𝑦 = 𝑎ଶ𝑥ଶ + 𝑎ଵ𝑥 + 𝑎 = 𝑎ଶ ቀ𝑥 +
భ 

ଶమ
ቁ

ଶ
+ 𝑎 −

భ
మ

ସమ
 that is 

𝑦 = 𝐴𝜉 + 𝐵  where A=𝑎ଶ and B=𝑎 −
భ

మ

ସమ
, and 𝑝 =

భ 

ଶమ
. The expanded uncertainty of the new 

approximate method is determined by the following relation [16]: 
 

𝑈 = 𝑡ଵି
ഀ

మ
,ିଶට𝑢ଶ൫𝐴 ൯(𝑥 + 𝑝)ସ + 2𝜌(𝑥 + 𝑝)ଶ 𝑢൫𝐴 ൯𝑢൫𝐵 ൯ + 𝑢ଶ൫𝐵 ൯             (32) 

 
For 𝛼 = 0.05 coverage probability is 0.95. Calculations were also made using the Levenberg-
Marquardt. The results of the match are presented in table 5a below. 
 
Table 5a: Comparison of new approximate method and Monte Carlo Method and Levenberg-
Marquardt method for constant absolute uncertainties u(x) =0.08, u(y)=0.17– fitting parameters 𝑎ଶ, 
𝑎ଵ, and  𝑎. 
 

Type of method 
Fitted parameters 

𝒂𝟐 𝒂𝟏 𝒂𝟎 ϕminglobal 

Monte Carlo method with iteration and 

solution for equation of third order  
0.1320 0.0091 1.0473 34.81 

Proposed aproximate method 
EXCEL  R EXCEL  R EXCEL  R  EXCEL R 

0.1320 0.1321 0.0095 0.0095 1.0491 1.0472 34.77 34.77 

Levenberg-Marguardt method 0.1320 0.0094 1.0483 34.82 

 
As we see from table 5a) the errors:  for 𝑎ଶ less than 0.1%, for 𝑎ଵ less than 4.2% for 𝑎 less than 
0.3%. Differences in the value of the criterion function of less than 0.12%. 
 
Table 5b: Comparison of new approximate method and Monte Carlo Method and Levenberg-
Marquardt method for constant relative uncertainties δ(x) =1 % and δ (y)= 5% – fitting parameters 𝑎ଶ, 
𝑎ଵ, and  𝑎. 
 

Type of method 
Fitted parameters 

𝒂𝟐 𝒂𝟏 𝒂𝟎 ϕminglobal 

Monte Carlo method with iteration 

and solution for equation of third 

order 

0.1256 0.0578 0.979 12.74 

Proposed aproximate method 
EXCEL  R EXCEL  R  EXCEL  R  EXCEL R 

0.1259 0.1256 0.0554 0.0578 0.982 0.979 12.75 12.75 

Levenberg-Marguardt method 0.1255 0.0579 0.979 12.75 

 
From table 5b) the differences in the value of the criterion function are less than 0.2 %. The 
estimated values do not differ for the parameter  𝑎 below 0.24%, for  𝑎ଵ below 4.1% in EXCEL 
( L-M method below 0.2%)  and for 𝑎 less than 0.31 %. 
 
Table 5c: Comparison of new approximate method and Monte Carlo Method and Levenberg-
Marquardt method for constant relative uncertainties δ(x) =2 % δ (y)= 0.5 % – fitting parameters 𝑎ଶ, 
𝑎ଵ, and  𝑎 
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Type of method 
Fitted parameters 

𝒂𝟐 𝒂𝟏 𝒂𝟎 ϕminglobal 

Monte Carlo method with iteration 

and solution for equation of third 

order 

0.1196 0.1184 0.905 51.99 

Proposed approximate method 
EXCEL  R EXCEL  R  EXCEL  R  EXCEL R 

0.1192 0.1191 0.1264 0.1272 0.899 0.898 51.17 51.17 

Levenberg-Marguardt method 0.1194 0.1207 0.904 51.98 

 
In above table 5 c) the estimated values do not differ: for the parameter  𝑎 below 0.8%, for  𝑎ଵ 
below 7.5% (L-M method 2%) and for 𝑎ଶ less than 0.5%. Differences in the value of the criterion 
function of less than 1.6% for proposed method and 0.02%) 
 
Table 5d: Comparison of new approximate method and Monte Carlo Method and Levenberg-
Marquardt method for constant relative uncertainties δ(x) =0% δ (y)= 2% – fitting parameters 𝑎ଶ, 𝑎ଵ, 
and  𝑎. 
 

Type of method 
Fitted parameters 

𝒂𝟐 𝒂𝟏 𝒂𝟎 ϕminglobal 

Monte Carlo method with iteration 

and equation of third order/ 

(Deteminant method) 

0.1252 0.0586 0.979 86.99 

Proposed aproximate method 
EXCEL  R EXCEL  R  EXCEL  R  EXCEL R 

0.1252 0.1254 0.0589 0.0577 0.979 0.967 86.99 86.99 

Levenberg-Marguardt method 0.1252 0.0586 0.979 86.99 

 
In above table 5d) the estimated values do not differ for the parameter  𝑎 below 1.2 % for  𝑎ଵ 
below 0.2 % % in R (L-M and EXCEL close to zero) for 𝑎ଶ less than 0.2 % (Excel close to zero). 
The differences of values of the criterion function are negligible. The values for the L-M 
method are identical to those for Monte Carlo, but for the approximate method a close to zero 
but non-zero uncertainty value is used u(x)= 10ିଵଵ.   
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Figure 5: The characteristic of expanded uncertainties ( the half of coverage corridor) for fitted parabolic 
curve for Monte Carlo method – blue lines and new approximate method – red lines  for considered 
cases: constant absolute uncertainties a) u(x) =0.08,  u(y)=0.17, constant relative  uncertainties: b)  
δ(x) =1 % , δ (y)= 5 % , c) δ(x) =2 % , δ (y)= 0.5 % , d) δ(x) =0 %  δ (y)= 2 %. 
 
The largest deviations in relation to the Monte Carlo method occur for the parameter 𝑎ଵ in 
Table 5 c) because as much as 7.5% for the proposed method, while the L-M method gives a 
deviation of 2%. Then the value of the global minimum of the criterion function is determined 
with an error of 1.6% for the proposed method, while for the L-M method this deviation is 
close to zero.  In other cases, we have small errors of the criterion function below 0.2%. The 
results for the proposed approximate method are similar for implementation in woorbook 
Excel and in the R environment.  In Table 5d) we have the smallest errors of the criterion 
function for the Levenberg-Marguardt method because it required writing a criterion function 
without the squares of the errors x because it could not start for settings of small uncertainties 
x. It coped without problems with a criterion function containing only the variable y 
(regression y to x). 
 
The results of matching the parameters of the function for the approximate method can be 
considered consistent. They coincide with the results obtained iteratively using Monte Carlo 
and the L-M method.  
 
In the case of the expanded uncertainty, the characteristics of which are illustrated in the 
diagrams of Figures 5a, b, c, d, the comparison concerned the results obtained by the Monte 
Carlo method and the approximate method from formula (32). The approximate method 
required numerical differentiation by xi, yi coordinates at the global minimum of criterial 
function point and determination of the parameters u(A), u(B) and ρAB, which fully take over 
the uncertainties of the coordinates xi and yi of the measurement points.  Of course, it is not, 
because the other parameters of the function being adjusted are also in fact associated with 
uncertainties. The differences in underestimation included in Figure 5a) are half of the 
expanded uncertainty of the estimated Monte Carlo. More or less in the middle part of the 
measurement range, we have an underestimation of the corridor at the maximum level below 
30%. 
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In fig 5 b and 5d cases we have areas of underestimation and overestimation – the lines 
constantly intersect at 4 points.  Dashed lines on figures 5 a) and b) show expanded 
uncertainty for LPU method. The standard deviations of coefficients 𝑎ଶ, 𝑎ଵ, and  𝑎  and 
correlation coefficients between them are calculated in R from their distributions. 

 
5.2 Example of adjustment to the sum of exponent and sinus functions  
 
The second example investigates the fit of a nonlinear function given by the equation 
 
𝑦 = 𝑏ଵ exp ቀ−

௫

మ
ቁ + 𝑏ଷ sin ቀ

௫

ర
ቁ                                                (33) 

  
In [12] with four nominal parameters 𝑏ସ = 6, 𝑏ଷ = 20, 𝑏ଶ = 1, 𝑏ଵ = 5,  The values of simulated 
measurement coordinates of x and y for n=10 with relative uncertainties of 2% are presented 
in the table 6. 
 
Table 6: The simulated coordinates for the nonlinear curve described by the equation (14). 
 
x 1 10 20 30 40 50 60 70 80 100 

y 6.01 4.25 1.65 0.76 1.60 -0.15 -0.44 0.87 -0.38 -2.05 

 
The results of calculations for the approximate and numerical methods of the L-M method 
were compared.  
 
For the approximate method, the following variable swap was used: 𝜉(𝑥, 𝒑) =

exp ቀ
௫

మ
ቁ sin ቀ

௫

ర
ቁ  and 𝜓(𝑦, 𝑥, 𝑝) = 𝑦 exp ቀ

௫

మ
ቁ. Then the nonlinear equation can be represented 

in the form 𝜓(𝑦, 𝑥, 𝑝) = 𝐴𝜉(𝑥, 𝑝) + 𝐵  where the relevant parameters are marked by   𝐴 =
𝑏ଷ, 𝐵 = 𝑏ଵ oraz 𝑝 = [𝑏ଶ, 𝑏ସ].  The uncertainties of the new coordinates based on the law of 
propagation of uncertainty are determined by: 
 
𝑢(𝜉) ≈ |𝜉ᇱ|𝑢(𝑥) = exp ቀ

௫

మ
ቁ |

ଵ

మ
sin ቀ

௫

ర
ቁ +

ଵ

ర
cos (

௫

ర
)|𝑢(𝑥),                                                                 (33a) 

 
And 
 
𝑢(𝜓) ≈ exp ቀ

௫

మ
ቁ ඥ𝑢ଶ(𝑦) + 𝑦ଶ𝑢ଶ(𝑥)/𝑏ଶ

ଶ                                                                  (33b) 

 
Since both new coordinates depend on the old x coordinate associated with the uncertainty 
u(x), the new variables are correlated with the correlation coefficient described by: 
 
𝜌కట =

௬

మ
exp ቀ

ଶ௫

మ
ቁ ቀ

ଵ

మ
sin ቀ

௫

ర
ቁ +

ଵ

ర
cos ቀ

௫

ర
ቁቁ 𝑢ଶ(𝑥)/(𝑢(𝜓)𝑢(𝜉))                                  (33c) 

 
Therefore, the B4 formula was used for the inverse effective covariance matrix taking into 
account the correlation between the new coordinates. The results of the calculations are 
presented in the table below. 
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Table 7: Results of coefficient obtained for approximate method and L-M. 
 

Type of method 

 Fitted parameters 

𝒃𝟏 𝒃𝟐 𝒃𝟑 𝒃𝟒 ϕminglobal 

Proposed approximate method for coordinates 𝜉, 𝜓 5.17 0.93 18.27 6.10 53.58 

Levenberg-Marguardt method for coordinates x, y  5,08 1.98 14.86 5.88 88.4 

 
It shows in table 6 that the parameters 𝑏ଵ, 𝑏ଶ, 𝑏ଷ, 𝑏ସ  determined by the L-M gradient method 
differ significantly from those obtained by the proposed approximate method, whose errors 
for the approximate method do not exceed the values of   3.4%, 7.1%, 8.7%, 1.7% respectively. 
Of course, it difficult to compare both criterial function because the one of the new coordinates 
𝜓 is depend on both coordinates x and y.  
 
Figure 6 illustrates the arrangement of the measurement points, the ideal curve and the two 
curves after adjustment using the approximate method and the Levenberg-Marguardt 
method. 
 

 
 
Figure 6: Nominal curve and fitted curves using the approximate method and the L-M method with 
simulated measuring points. 
 
As we can see from Figure 6, the approximate fitting is closer to the nominal curve. However, 
the fit was based on measuring points, which could also represent a curve with slightly 
different parameters than the nominal ones. 
 
6. Conclusion 
 
The paper presents an approximate method of fitting any nonlinear curves (curves 
parameters) using the weight total least squares method, which is illustrated with examples. 
This method is based on the law of propagation of error and of uncertainty, i.e. the use of only 
the first derivatives determining analytically of the transforming functions the curve into the 
new coordinate system in which it is described by a straight line. Using an effective covariance 
matrix allows you to reduce the number of variables to optimize the criterion function. In such 
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a coordinate system, the criterion function depends solely on the parameters of the function 
represented by the vector p and the slope coefficient of the straight-line A, which greatly 
simplifies its minimization. By monitoring the minimum characteristics of the criterion 
function, the values of which are determined numerically depending on A, it is possible to 
obtain the global minimum with the free selection of other parameters. Calculation of the 
value of a function defined in this way is always possible, as long as the effective covariance 
matrix is correctly determined. 
 
The methods used so far require a vector of initializing quantities, and numerically 
determined gradients of multivariate functions can lead to errors, which ends in the lack of 
iteration and, as a result, the lack of the final result of parameter matching. 
 
The proposed approximate method does not have this feature and always determines the 
global minimum of the criterion function. The problem with numerical differentiation arises 
when determining the covering corridor. 
 
The presented examples and the verification of the method for the quadratic function show 
that it allows for precise adjustment and estimation of the parameters of nonlinear curves and 
of the uncertainty corridor, taking into account all possible correlations of the measured 
coordinates. In most cases, we should expect an overestimation of the uncertainty corridor in 
relation to the Monte Carlo method, because we use the uncertainty propagation law with the 
expansion coefficient resulting from the student’s t-distribution, although there will also be 
ranges in which the corridor will be slightly underestimated. 
 
A comparison of the proposed approximate method with the classical Levenberg-Marguardt 
method implemented in the R environment showed its high accuracy and precision. The 
errors of comparable parameters did not exceed a single percent, which means that it can be 
used alternatively or dually in each case for comparison purposes. 
 
Conflict of interests: The authors declare that there is no conflict of interest. 
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Appendix A Types of Least Squares Method 
 
The formulas given by (5) can be expanded to the form  
 
𝜙(𝛥𝑋, 𝛥𝑌) = ∑ 𝑄

௱௫
మ

௨మ(௫)
+ ∑ 𝑄ା,ା

௱௬
మ

௨మ(௬)
+

ୀଵ

ୀଵ 2 ∑ 𝑄

௱௫௱௫ೕ

௨(௫)௨൫௫ೕ൯
+

வୀଵ 2 ∑ 𝑄ାା

௱௬௱௬ೕ

௨(௬)௨൫௬ೕ൯
+

வୀଵ

2 ∑ 𝑄ା

௱௫௱௬ೕ

௨(௫)௨൫௬ೕ൯


,ୀଵ  → min                          (A. 1) 

 
First case when measurement is carried out with coordinates 𝑥  without uncertainties - 𝑢(𝑥)  →

0 we get the WLS weighted method   
 
𝜙(𝛥𝑌) = ∑ 𝑄ା,ା

௱௬
మ

௨మ(௬)
+

ୀଵ 2 ∑ 𝑄ାା

௱௬௱௬ೕ

௨(௬)௨൫௬ೕ൯


வୀଵ = 𝛥𝑌்𝑈𝛥𝑌                   (A. 2) 

 
 
Of course, if the matrix 𝑅ିଵ = 𝑅 = 𝐼 is diagonal – the case without correlations then 𝑄 = 1   and 
condition (1) is reduced to minimizing the sum of weighted squares (WTLS without 
correlations): 
 

𝜙(𝛥𝑋, 𝛥𝑌) = ∑
௱௫

మ

௨మ(௫)
+

௱௬
మ

௨మ(௬)

ୀଵ → 𝑚𝑖𝑛                     (A. 3) 

 
When uncertainty 𝑢(𝑥) = 𝑢(𝑦) as to the value the criterial function reduced to the form: 
 

𝜙(𝛥𝑋, 𝛥𝑌) = ∑
௱௫

మ

[௨௧(௫)]మ +
௱௬

మ

[௨௧(௬)]మ → 𝑚𝑖𝑛 
ୀଵ                     (A. 4) 

 
It is called TLS (total last squares method). When  𝑢(𝑥) → 0 then we are dealing with the most 
well-known method of least squares OLS (ordinary least squares): 
 

𝜙(𝛥𝑌) = ∑
௱௬

మ

[௨௧(௬)]మ → 𝑚𝑖𝑛
ୀଵ                                     (A. 5) 

 
which means  ∑ 𝛥𝑦

ଶ → 𝑚𝑖𝑛
ୀଵ . 

 
Appendix B Effective Inverse Covariance Matrix 
 
To fit a straight-line y=ax+b, there are analytical solutions for zero gradient (10a) and we can 
easily determine the fitting errors for x and y coordinates. In this way we can replace equation 
(1) with matrix 𝑈

ିଵ by the equation for regression y on x with effective inverse symmetric 
matrix  𝑈

ିଵ  [1].  
 
In the special case where the matrix 𝑉ଷ is symmetrical, i.e.    𝑉ଷ = 𝑉ଷ

T, then 
 
𝑈

ିଵ = (𝑉ଵ𝑉ଶ − 𝑉ଷ𝑉ଷ)𝑉ିଵ                                                                           (B.1) 
 
and when    𝑉ଷ = 0  then   
 
 𝑈

ିଵ = (𝑎ଶ𝑈 + 𝑈)ିଵ                                                                           (B.2) 
 
As a result, for uncorrelated quantities, when matrices 𝑈 and  𝑈 are diagonal 𝑈

ିଵ  has only 
non-zero diagonal values equal to: 
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[𝑈

ିଵ ]= (𝑢ଶ(𝑦) + 𝑎ଶ𝑢ଶ(𝑥))ିଵ where and i=1,…,n.                                             (B.3) 
 
This is a special case in which the correlations between the measured at each point are 
uncorrelated. 
 
If correlations are present, then a more general formula is used 
 
[𝑈

ିଵ ]= (𝑢ଶ(𝑦) + 𝑎ଶ𝑢ଶ(𝑥) − 2𝜌௫௬
𝑎𝑢(𝑥)𝑢(𝑦))ିଵ,                                                       (B.4) 

 
which is used in physical measurements – all matrixes that are components of the matrix 𝑼𝒛 
are diagonal. Special cases are dictated not only by the simplification and acceleration of 
calculations, but also by the possibility of performing them, because, as can be seen from the 
formula for the general form of the formula for the effective covariance matrix, there is an 
operation of inverting the covariance matrix V, which, depending on the input data and the 
algorithm used, may lead to singularities and there may be problems with its numerical 
determination in general. 
 
Appendix C Glossary of Principal Symbols 
 

Symbol Description 

ϕஞந୫୧୬୪୭ୠୟ୪ global minimum of criterial function in new coordinates 

a,A slope of straight line 

A୪୭ୠୟ୪ ୫୧୬ slope of straight line at global minimum of criterial function 

a, aଵ, aଶ parameters of the function described by the eq. (27) 

b,B intercept of straight line 

B୪୭ୠୟ୪ ୫୧୬ intercept of straight line at global minimum of criterial function 

u(A),u(B) standard uncertainty of A and B determined numerically 

ρ correlation coefficient between  A and  B 

bଵ, bଶ, bଷ, bସ parameters of the function described by the eq (33) 

C, CT 
matrix, transposition of matrix of sensitivity coefficient -element are   first partial 

derivatives due to xi and yi coordinates 

U୷ expanded uncertainty for y equal the half width of coverage corridor  

Uଢ଼ୣ
ିଵ   Effective inverse covariance matrix size n x n for x,y coordinates 

x୧ y୧ coordinates of measurement points before transformation coordinates x to ξ 

ρ୶୷ correlation coefficient between  x୧ and  y୧ 

x୧ y୧ coordinates of measurement points before transformation coordinates x to ξ 

p m-dimensional vector of fitting parameters 

p scalar parameters 

β n x n in general non symmetric matrix obtained as local minimum due to vector Xp 

u(x୧) standard uncertainty of measurement points for coordinates x  

u(y୧) standard uncertainty of measurement points for coordinates y  

δ(x) standard relative uncertainty of measurement points for coordinates x 

δ(y) standard relative uncertainty of measurement points for coordinates y 

u(ξ୧) standard uncertainty of measurement points after transformation coordinates x to ξ 
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u(ψ୧) standard uncertainty of measurement points after transformation coordinates y to ψ 

U symmetric covariance matrix size 2n x 2n for variable z 

Uଡ଼ symmetric covariance matrix size n x n for variable x 

Uଢ଼ symmetric covariance matrix size n x n for variable y 

Uଡ଼ଢ଼ in general, non-symmetric covariance matrix size n x n for variable x and y 

U
ିଵ inverse covariance matrix for z 

VଵVଶ, Vଷ three parts of inverse covariance matrix  U
ିଵ 

U୧୬ input covariance matrix 

U୭୳୲  output covariance matrix 

ϕ(ΔX, ΔY) criterial function for two vector of fitting error ΔX for x coordinate and ΔY for y 

coordinate 

X n-dimensional vector of coordinates x (measurement points) 

Y n-dimensional vector of coordinates y (measurement points) 

ΔX n-dimensional vector of fitting error for coordinates x 

ΔY n-dimensional vector of fitting error for coordinates y 

ΔZ 2n-dimensional vector of fitting error for coordinates x and y 

ξ୧, ψ୧ coordinates of measurement points after transformation coordinates y to ψ 

ρஞந correlation coefficient between  ξ୧ and  ψ୧ 

Δξ n-dimensional vector of fitting error for coordinates ξ   

ΔΨ n-dimensional vector of fitting error for coordinates ψ 

Uஞ  symmetric covariance matrix size n x n for variable  ξ  

Uஏ symmetric covariance matrix size n x n for variable ψ 

Uஞ ஏ in general, non-symmetric covariance matrix size n x n for variable ξ and ψ 

X୮ x୮ n-dimensional vector   of coordinates of points lying on the fitting curve 

ξ, ξ′ transformation function for variable x and first derivative of the function ξ 

ψ, ψ′ transformation function for variable y and first derivative of the function ψ 

ξ n-dimensional vector of coordinates ξ   

ψ n-dimensional vector of coordinates ψ 

R correlator matrix size 2n x 2n for x and y 

Rିଵ inverse of correlator matrix size 2n x 2n 

Q୧୨ element of inverse of correlator matrix for i row and j column 

P, Q coefficients in canonical equation of third degree 

I identity matrix 

I measured current 

I0 saturation current of diode 

ε constant characteristic of a particular diode and operating temperature 

U measured voltage 

R resistance of resistor 

x’, y’ coordinates in the local cartesian system of CNN machines 

λ୶, λ୷ half axis of ellipse for coordinates x and y 

R  environment for statistical programing 

r୫୧୬,.α୫୧୬, φ୫୧୬ parameters of translation and rotation two-dimensional object (ellipse) 
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S,  Sஞ,  Sஞஞ , Sந , SநநSஞந auxiliary coefficient defined by the new coordinates and the new inverse effective 

covariance matrix 

H tension of the conductor at the lowest point of the conduit 

L 
distance of the first column from the x coordinate corresponding to the lowest 

overhang 

hmin the lowest overhang 

 
 
 


