
ISSN 2563-7568

Int J Auto AI Mach Learn, Vol 4, Issue 2, December 2024 121

RESEARCH ARTICLE

Application Optimizing AI Performance on Edge
Devices: A Comprehensive Approach using Model
Compression, Federated Learning, and Distributed

Inference
Venkata Mohit Tamanampudi*

Senior Devops Automation Engineer, JP Morgan Chase, USA

Abstract

One major problem arises when AI models are run on edge devices because these have limited
processing power, battery, and time constraints. This article explores methods to improve the
performance of AI models in such settings so that they operate optimally and simultaneously
and provide fast and accurate results. Some methods include model compression techniques
such as pruning and quantizing, which make the model small sized to make the required
computations with low energy utilization and knowledge distillation. Moreover, a special
concern is checking the possibility of using federated learning as one of the ways of training AI
models on devices spread across a distributed network while maintaining users’ privacy and
avoiding the need to transfer the data to the central server. Another approach, distributed
inference, in which the computations are suitably divided between different devices, is also
investigated to enhance system performance and reduce latency. The use of these techniques
is described in terms of the limited capabilities inherent to devices like smartphones, IoT
sensors, and autonomous systems. In this work, efforts have been made to improve the
inference and model deployment in edge AI systems, which is instrumental in enhancing the
end user experience and smart energy usage by bringing sophisticated scale out edge-
computing solutions closer to reality through application optimized edge AI models and
frameworks.

Key Words: Edge computing; AI optimization; Model compression; Federated learning; Distributed
inference; Energy efficiency; Real time AI; Edge cloud collaboration; IoT devices; Machine learning

*Corresponding Author: Venkata Mohit Tamanampudi, Senior Devops Automation Engineer, JP Morgan
Chase, USA, E-mail: venkatamohit.tamanampudi@chase.com

Received Date: November 18, 2024, Accepted Date: November 25, 2024, Published Date: December 02, 2024

Citation: Tamanampudi VM. Application optimizing AI Performance on Edge Devices: A Comprehensive
Approach using Model Compression, Federated Learning, and Distributed Inference. Int J Auto AI Mach
Learn. 2024,4(2):121-132.

This open-access article is distributed under the terms of the Creative Commons Attribution
Non-Commercial License (CC BY-NC) (http://creativecommons.org/licenses/by-nc/4.0/),
which permits reuse, distribution and reproduction of the article, provided that the original
work is properly cited, and the reuse is restricted to non-commercial purposes.

mailto:VENKATAMOHIT.TAMANAMPUDI@CHASE.COM

ISSN 2563-7568

Int J Auto AI Mach Learn, Vol 4, Issue 2, December 2024 122

1. Introduction

Edge computing decentralizes processing tasks, bringing computation closer to data sources
such as IoT sensors, autonomous vehicles, and smart devices. While this approach minimizes
latency and optimizes resource use, edge devices face challenges, including limited
computational power, restricted memory, and power constraints. These constraints make
real-time AI deployment difficult, necessitating strategies like model compression, federated
learning, and distributed inference. By integrating these methods, edge AI systems can
perform optimally, enabling efficient operations in latency sensitive applications such as
industrial IoT and autonomous driving. Edge computing helps AI be deployed in healthcare
and smart city sectors, where devices can be placed in infrared source settings. It is also
boosted by the emerging 5G networks that have quickly evolved towards connecting
multiple devices to the networks and making interactions between edges and clouds.
However, implementing edge devices has challenges, including limited memory capacity,
storage capacity, power to work on such devices, and less power utilization. Therefore, edge
computing is a paradigm shift in data distribution and processing, bringing computation
closer to the point where data is being generated, emergent devices and smart systems like
smartphones, IoT, etc. [1,2] defined edge devices as networked hardware that enhances
operationality and reactivity during operational processing. With the growth of such devices
escalating, they assume a crucial function in AI usage, consequently, in any circumstances
late, agencies should be low, and the speed of data throughput should be high [3].

Incorporating AI models directly into edge devices empowers real-time decision-making
while reducing the utilization of common cloud infrastructure, which is always
characterized by high latency and low bandwidth [4]. This approach helps to accelerate the
data processing of streams locally to improve the functionality of applications such as self-
driving automobiles, real-time video surveillance, and home automation systems, as
suggested by [5]. As a result of the implementation of local computation that is part of edge
computing, the amount of data transferred across the network is reduced, traffic is also
alleviated, and the overall effectiveness of the AI systems is enhanced [6,7]. We also see that
edge computing makes AI scalable as it splits multiple computational tasks into many devices
instead of accumulating them in one place, as in a data center [8]. Besides, it optimizes
resource use and improves systems' capacity availability and operational efficacy [9].
However, integrating AI models on edge devices is incredibly challenging due to the limited
computing capability, the constraint in energy resources that edge devices normally have
and the requirement of real-time inference normally associated with most applications [10].
Some of these edge devices have limits on processing power, memory, or energy, due to this,
there is a need to incorporate algorithms and model architectures that have sufficient
capability and do not overuse the available resources [11]. Solving these challenges presents
techniques like model compression, federated learning and distributed inference, which
make edge AI solutions perform optimally within different operational settings [12].

2. Related Work

The progress in edge computing has been very swift. As a result, there have been
developments of interest in bringing AI models to edge devices with limited computational
power and energy consumption [3]. Smartphones, multiple IoT devices, and autonomous
systems are often resource scarce, meaning different techniques must be applied to achieve
high performance and minimal latency, consuming less power simultaneously [11]. One such
area is model compression, which is centered on the problem of making AI models smaller
and less complex so that they can fit into the memory and processing power of a peripheral

ISSN 2563-7568

Int J Auto AI Mach Learn, Vol 4, Issue 2, December 2024 123

device while being efficient and accurate [13]. Previous works have reduced computation
overhead and model size in several ways, such as quantization, pruning, and knowledge
distillation.

In this paper, quantization will refer to a compression method that scales down the precision
of the model’s weight and activation from floating point to lower precision format, namely
an 8-bit integer, to gain a great reduction in memory and inference time. This method has
successfully minimized power consumption in convolutional neural networks (CNNs) used
in smartphone image recognition without significantly compromising performance [14].
Likewise, the pruning techniques have been applied in the context of neural networks to
eliminate some of the weights that are not essential or are less significant in enabling the
outcomes while reducing the number of computations during the inference stage [15]. This
reduces execution time on edge devices, as seen in several probes on pruning deep learning
models for constrained devices [16].

Other optimization methods include what is referred to as knowledge distillation, which is
the process of effectively transferring knowledge from the teacher model to the student model
[17]. The student model emulates the functionalities of the teacher model with limited
parameters; thus, it is most suitable for use in devices with low computations. Studies in other
tasks involving NLP and object detection have revealed that knowledge distillation boosts the
performance of smaller models in various tasks. At the same time, a minimal accuracy is lost
[18]. Another area of interest is federated learning, a distributed model training solution that
prioritizes data privacy by not uploading raw data to the server [19]. This approach not
only improves data security but also reduces the amount of network data that needs to be
transmitted, making it an ideal choice for edge devices in settings with limited or intermittent
connectivity [20]. As pointed out, the applications of federated learning are diverse, spanning
fields such as healthcare and autonomous systems, where edge devices can update AI
models in real-time with minimal delay and energy loss [21]. Distributed inference is an
interesting application currently in development. This implies dividing a large AI model into
several edge devices, each of which contributes a part to the inference model. Altogether,
through the collaboration of several edge devices, distributed inference rates can reach real-
time rates even for big models [22]. For instance, distributed inference has been employed in
the Elios-3 approach for self-driving vehicles to decrease system latency by concurrently
processing data from LIDAR, cameras, and GPS, and other sources to process data [4].

Recent developments in hardware accelerations, including Google’s edge TPU and NVIDIA’s
Jetson, have also helped roll out the models to edge devices to a great extent [23]. Such
specialized processors are designed to perform machine learning algorithms, providing
better performance for computation in terms of energy efficiency [13]. Edge AI hardware
accelerators are intended for real-time machine vision and machine hearing processing, object
detection, and video analysis on low power electronic devices [24]. Deploying AI models on
edge devices effectively requires the implementation of several sophisticated approaches,
such as model compression, federated learning, distributed inference, and hardware
acceleration [25]. These approaches not only foster the initiation of elaborate AI applications
on devices with minimal computational capacity but also minimize latency and energy
usage, making them suitable for real-time applications in areas such as autonomous systems,
IoT, and mobile computing.

3. Methodology

The task of enhancing the performance of AI models on edge devices is critical. Techniques

ISSN 2563-7568

Int J Auto AI Mach Learn, Vol 4, Issue 2, December 2024 124

like model pruning and quantization aim to improve computational efficiency, albeit with

possible trade-offs in predictive accuracy. The ultimate goal is to enable efficient deployment

of AI models while preserving real-time responsiveness on resource constrained edge

devices.

3.1. Model compression techniques

Techniques used in model compression, like pruning, are vital in making models take small
storage space and less computation in the edge.

3.1.1. Pruning and quantization

In a broad sense, pruning is the method which, when applied to a phenomenal network,
eliminates weaker weights and links in order to reduce the size of a model while, at the same
time, increasing the accuracy of the model. This can be achieved, for instance, by magnitude-
based pruning, where weights below a given threshold are pruned, or structured pruning,
where certain filters or neurons are removed from the network [19]. Even though
quantization reduces the precision of the model parameters from the full 32-bit floating-point
representation to low-numerated integers, such as 8-bit integers, it positively affects the
memory requirements of a certain model, and the computations required. There are two
approaches, namely, post-training quantization and quantization aware training.

3.1.2. Knowledge distillation

Knowledge distillation uses the knowledge stored in a large and complex Teacher model. It

transfers it to a smaller, more efficient, implementable student model ideal for edge devices.

Hence, the student model imitates the teacher's output or, in the case of the teacher model

with soft argument outputs, equals the performance in terms of efficiency at a substantially

lower computational resource [19].

3.1.3. Mathematical equation for model compression

Compressed model size equation

S_compressed = N x (1 − p) x q (1)

Where:

• S_compressed = Size of the compressed model (in bits)

• N = Total number of parameters in the original model

• p = Pruning ratio (the proportion of parameters pruned, 0 ≤ p < 1)

• q = Bit-width per parameter after quantization

Explanation:

Pruning (p): Pruning Ratio (p) represents the fraction of parameters removed from the
original model. After pruning, the remaining number of parameters is N x (1 - p).

Quantization (q): Bit-width (q) denotes the number of bits used to represent each
parameter post quantization. Reducing the bit-width from, for example, 32 bits to 8 bits,
significantly decreases the memory footprint.

ISSN 2563-7568

Int J Auto AI Mach Learn, Vol 4, Issue 2, December 2024 125

Combined effect: The product (1 - p) x q captures the dual impact of reducing both the
number of parameters and the precision of each parameter. Multiplying by N scales this
effect based on the original model size.

Example calculation: Suppose you have an original neural network with:
• N = 1,000,000 parameters

• Pruning ratio p = 0.5 (50% of parameters pruned) Quantization bit-width q = 8 bits.

Plugging into the equation: S_compressed = 1,000,000 x (1 - 0.5) x 8 = 1,000,000 x 0.5 x 8 =

4,000,000 bits. This results in a compressed model size of 4,000,000 bits compared to the
original size of 32,000,000 bits (assuming 32-bit precision).

Extension to knowledge distillation: For Knowledge Distillation, the compression can be
represented by the size of the student model (S_student) relative to the teacher model
(S_teacher) :S_student = α x S_teacher
Where:
α = Compression factor (0 < α < 1)
It can also provide speed charts and elevation charts but for paid users only. Consequently,
the application is solely used for retrieving GPX routes. However, speed, distance travel and
other parameters of analysis are required to cover in the coding process.

3.1.4. Federated learning

Edge devices can become competent by learning from each other while keeping the data on
the user's device, giving the user full control over data processing. This is particularly
beneficial in scenarios where data control is of utmost importance, such as in the medical field
or when managing a personal photo library [20].

Federated averaging: Every edge device applies local model updates on the data, comes up
with an update, and averages all the updates to create a new update to the global model. This
goes on round and round within the loop until the model achieves improved performance to
handle the data without the need to be aggregated at the center.

Handling non-IID data: The second problem of federated learning is when the devices have
non-IID data. Some of these data gathering and processing methods have to comprise steps
like clustering devices with a similar distribution of data or employing federated learning
models suitable for the given characteristics of the data downloaded by every device.

3.1.5. Decentralized inference

Here, AI processing is divided into smaller components and executed on edge devices, is an
incredibly efficient strategy. By ensuring that each device's workload is manageable, this
approach significantly enhances the overall system performance, providing a sense of relief
for the system.

Edge-cloud collaboration: In the edge-cloud collaboration, we can have computationally
intensive parts of the model for the cloud. For instance, the convolution layers of a CNN can
be implemented on the cloud. In contrast, a separate sub-model can be implemented on the
device, such as the fully connected layers of the CNN. It reduces latency as per the load
distribution so that the computations are handled on the edge of the cloud depending on the
real-time factors and the complexity of the computation requirements.

ISSN 2563-7568

Int J Auto AI Mach Learn, Vol 4, Issue 2, December 2024 126

Model partitioning: The ideas presented below are consistent with that of the model-
partitioning paradigm. The main goal in this strategy is to divide the model within the various
devices or systems to balance the load and ensure low latency between the devices. In one
layer-wise partitioning, the layers of the deep neural network are mapped over the different
devices.

3.2. Performance evaluation

The success of these methodologies is typically evaluated using metrics such as inference
time, model accuracy, and energy consumption on the edge device. Benchmarking is often
conducted using standardized datasets like CIFAR-10 or ImageNet, and edge-specific metrics
such as Frames per Second (FPS) or power consumption (measured in milliwatts) are critical
to ensuring that optimized models meet real-time constraints [20].

3.3. Experimental design and procedure

This experimental design will ensure that AI models are prepared for screening in these
specific edge computing systems: smartphones, IoT devices, and other autonomous systems
with limited resources compared to larger computers. The major concern is ensuring the
models perform well while keeping the latency and energy consumption as low as possible.
The way to achieve this optimization is to study using methods such as model compression,
federated learning, and distributed inference. The study entails three key phases: Model
compression, pruning, quantization, knowledge distillation, federated learning,
asynchronous updates, client selection, distributed inference, and edge-cloud offloading.
The baseline model is identified, and experimentations are conducted on edge devices. Then,
the accuracy loss of the compressed models compared to the baseline model and the
efficiency gains achieved are analyzed. There is dataset distribution, initial model training,
federated learning algorithms, and performance assessment after each round of aggregation.
This includes infraction time and latency, amount of energy used, model performance, and
memory consumption. The last analysis would ascertain the significance of the difference
between the baseline and experimental groups. At the same time, the efficiency
improvement, in terms of optimization, would be plotted out in the energy usage graph
against inference time and model accuracy. Another helpful graphic that will be created will
be a tradeoff curve a Pareto front that will illustrate the tradeoff between energy
consumption and performance indicators.

3.4. Participant recruitment and ethics statement

The study concerned with enhancing model performance on edge devices call for participant
acquisition to guarantee their suitability and validity. Devices should also have different
hardware specifications and structures and be used under different environmental
conditions. It requires cooperation with manufacturers of devices and software and with
users in industries that apply edge computing to maintain the study’s practical relevance. A
large, sufficient, statistically significant number of edge devices is chosen to minimize the
variance and guarantee generalization.

The major ethical issues surrounding the use of AI algorithms in optimizing edge devices
include the privacy and rights to the data used, consent procedures, efficiency and
effectiveness of model use, environmental issues, and bias. Security requirements must be
established to secure the information processed on the edge devices. Customers should be

ISSN 2563-7568

Int J Auto AI Mach Learn, Vol 4, Issue 2, December 2024 127

aware of their data consumption and protection, Ex AI should also be applied. The
optimizations addressed in the study could help decrease energy consumption and battery
life to minimize the impact on the natural environment on most edge computing
implementations. Last, the AI models should have no bias, especially when used in the
systems that directly impact people’s decisions.

3.5. Data analysis

Example: Consider a tech company developing AI models for autonomous drones used in
real-time environmental monitoring. These drones must operate in remote areas with limited
connectivity and battery life, meaning the AI models must be optimized for deployment on
the drones' onboard computers, which have limited computational resources.

Problem: The original AI model for image classification and anomaly detection (used to
detect environmental changes such as forest fires, floods, or wildlife) is too large and
computationally expensive for the drones’ hardware. The company needs to reduce the
model's size and computational demands while maintaining accuracy and real-time
performance to ensure the drones can operate for longer periods without needing to recharge
or connect to the cloud.

Solution: The company decides to apply different model compression techniques to the
original AI model to make it suitable for deployment on edge devices (the drones). The
following data represents the outcomes of using various compression techniques.

Table 1: Comparison of model compression techniques for AI on edge devices.

Compression technique Model size reduction

(%)

Accuracy loss (%) Computational

efficiency gain (%)

Pruning (magnitude-based) 40 2 35

Pruning (structured) 50 3 45

Post-training quantization 75 1 60

Quantization aware training 65 0.5 55

Knowledge distillation 50 1 50

Model size reduction (%): The percentage reduction in the model size after applying the compression technique.

Accuracy loss (%): The loss in accuracy of the compressed model compared to the original model.

Computational efficiency gain (%): The improvement in computational efficiency (in terms of reduced memory

usage or faster inference time).

ISSN 2563-7568

Int J Auto AI Mach Learn, Vol 4, Issue 2, December 2024 128

Figure 1: Comparing model compression Techniques.

Table 2: Performance evaluation of federated learning and distributed inference techniques.

Technique Inference time (ms) Model accuracy (%) Energy consumption (mW)

Federated learning

Federated Averaging 150 92 120

Handling non-IID data 180 88 140

Distributed inference 140

Edge cloud collaboration 100 95 100

Model Partitioning 130 93 110

Inference Time (ms): Time taken for the model to make a prediction.

Model Accuracy (%): The percentage of correct predictions made by the model.

Energy Consumption (mW): Amount of power consumed by the model during inference.

Figure 2: Performance comparison of distributed Learning Techniques

ISSN 2563-7568

Int J Auto AI Mach Learn, Vol 4, Issue 2, December 2024 129

4. Results

In Table 1, the company applied the following techniques to enhance its drone AI system.
Performing magnitude-based pruning on the models reduced their size to 40%, with the
added benefit of a battery life that is now 35% longer. Structured pruning has shrunk the
model sizes by 50%, improving the computation performance by 45%. Nevertheless, accuracy
was decreased to 3%, which may be crucial for high-risk scenarios such as forest fires. Using
post-training quantization, the model size was also trimmed down to 25% of the original,
resulting in an accuracy degradation of only 1%, thus improving drones' efficiency by 60%.
With Quantization-Aware Training, the model's size was reduced to a third, and the overall
computations required to deliver the same outcomes were cut down by half, which suited it
well for real- time anomaly detection. Knowledge distillation helped to shrink the model's
size by 50%, which led to an overall accuracy loss of only 1%, so computational efficiency
had improved by 50%. Post-training quantization was the most effective as it expanded
drones' capabilities to process data independently without constantly using the cloud. It is
useful when monitoring remote areas in real-time.

Table 2 assesses AI optimization outcomes of Federated Averaging, Handling Non-IID Data,
Edge-Cloud Collaboration, and Model Partitioning for edge devices. Federated Averaging is
a method of federated learning that consists of averaging the model updates performed by
different devices, which results in low time for inference and high model efficiency.
However, as already mentioned, handling non-IID data demands more time for computation
and power consumption, which may lead to battery consumption and unoptimized use of
resources. It is observed that Edge-Cloud Collaboration has the least inference time and
highest accuracy compared to other techniques, and Model Partitioning divides the model
into partitions, for which the inference time is much larger. It was discovered that it was
critical to choose the right optimization method depending on the needs of the given
application. Performance centralization and distribution are highlighted in Federated
Averaging and Edge-Cloud Collaboration results, Handling Non-IID Data and Model
Partitioning are also effective but have their weaknesses. These distinctions make it possible
to make decisions regarding their performance, accuracy, and consumption when deploying
AI models on edge devices.

5. Discussion and Limitations

Table 1 presents a statistical analysis of various compression techniques for AI models,
focusing on three key metrics: Model Size Reduction, Accuracy Decrease, and
Computational Gain. Such metrics assist in comparing how each technique reconciles the
conflicts between model size, model accuracy, and computational cost. Magnitude-based and
Structured pruning ensures that the model size is reduced to 40% and 50%, respectively, with
a gain in computational efficiency of 45%. It has been observed that Post Training
Quantization helps reduce the model size to the maximum extent of 75%, while, with the
help of Quantization-Aware Training, the model size can be made 65% smaller, and
computational complexity can be enhanced by 55%. Knowledge distillation has advantages
in reducing model size while being relatively accurate, depending on the need.” Accordingly,
P-TQ has the smallest model size and cis efficient with the lowest accuracy loss for
applications that require substantial compression. The second evaluation method,
Quantization-Aware Training, has a similarly satisfactory size reduction with a moderate
sacrifice of accuracy, albeit slightly less efficient than Post-Training Quantization. Pruning
(Structured) provides the highest size reduction and maximum efficiency improvement of all
the pruning methods, but that comes at the cost of minimum accuracy.

ISSN 2563-7568

Int J Auto AI Mach Learn, Vol 4, Issue 2, December 2024 130

Table 2 compares four optimizations for AI model performance on edge devices regarding
Inference Time, Model Accuracy, and energy Consumption. Out of the four techniques,
Edge-Cloud Collaboration shows the least inference time of 100 ms, 30 ms less than Model
Partitioning (130 ms), and 50 ms less than Federated Averaging (150 ms). It is one of the
fastest techniques to execute when compared to all other techniques. Cross-client modeling
performs the worst at an inference time of 180 ms, significantly higher than Edge-Cloud
Collaboration’s 100 ms. The highest accuracy of 95% is achieved by the Edge-Cloud
Collaboration technique, thus indicating that it outperforms all the other techniques.
Nevertheless, Handling Non-IID Data has the least accuracy at 88%, suggesting that the
approach may not efficiently address the diverse data distribution. Edge-Cloud
Collaboration takes the least energy at 100 mW and is the most efficient. In summary, Edge-
Cloud Collaboration is more effective than other techniques regarding inference time, model
accuracy, and energy spent using edge-device AI models. Thus, Edge-Cloud Collaboration
is a more balanced approach that optimizes the performance of the AIs on the edges. Thus,
although Federated Averaging is not the most accurate and energy efficient approach, it has
a relatively very low inference speed. Certain factors are worth considering when deploying
AI models at the edge.

Firstly, devices applied to the operational environment are often characterized by limited
computational capabilities, memory, and storage compared to servers or cloud resources.
Still, some approaches, like model compression, can compress the model to a desired size,
but keeping the acceptable metrics values is a problem. Concerning model complexity and
computational performance, most algorithms have an undesirable compromise due to
restrictions on fine-tuning for certain activities, such as high-precision tasks.

Secondly, energy consumption is important for edge devices, given that such devices are
usually battery- based. Higher-performance AI models require more resources, hence
requiring more powers the consumption of power. Pruning models to reduce power
consumption has the tendency to affect two other factors: model precision and response time.
Some approaches, like model pruning or quantization, help reduce power requirements but
do not always provide the necessary performance for specialized AI tasks.

Thirdly, the temporal aspect involves latency and real-time, which are essential to edge
applications like the autonomous driving industry or video surveillance. Offline execution
helps to decrease the time latency of data transmission to the cloud, but computational
latency due to the complex models may hamper real- time performance.

Fourthly, there are heterogeneities involved with edge devices, making it challenging to
generalize models and the like or develop optimization algorithms. In particular, federated
learning allows edge devices to jointly train models while the sovereignty of the raw data
remains preserved. However, transmitting model updates between the devices and a central
server enhances the communication overhead resulting in high latency, energy
consumption, and limited scalability. Also, distributed inference, where specific parts of a
model run on various devices or in cooperation with a cloud, brings new problems.

6. Conclusion

Edge computing, combined with AI optimization techniques such as model compression,

federated learning, and distributed inference, is paving the way for efficient, real-time AI

applications on resource-constrained devices. Model compression techniques like pruning,

ISSN 2563-7568

Int J Auto AI Mach Learn, Vol 4, Issue 2, December 2024 131

quantization, and knowledge distillation significantly reduce the computational overhead

and energy requirements while maintaining acceptable accuracy levels. Federated learning

enhances data privacy and scalability but requires robust solutions for handling non-IID data

and communication overhead. Distributed inference and edge-cloud collaboration optimize

resource usage, offering improved performance and reduced latency.

The study highlights the necessity of selecting the appropriate optimization strategy based on
application-specific requirements, balancing trade-offs between energy efficiency, accuracy,
and computational speed. The findings emphasize the potential of these techniques to
transform edge AI systems, empowering applications in areas like healthcare, smart cities,
and autonomous driving, with minimal latency and energy consumption.

References

1. Shi W, Cao J, Zhang Q. Edge computing: vision and challenges. IEEE Internet Things J.

2016;3:637-46.

2. Sahraei A, Morsali M, Esmaeilzadeh H. Edge computing and its application in IoT: a

survey. J Computing Inf Technol. 2020;28:359-74.

3. Zhang C, Yu H, Luo C. AI at the edge: a review of technologies and applications. IEEE
Access. 2021;9:124783-800.

4. Chen J, Liu Y, Zhao Q. Edge computing for smart systems: a survey and research
directions. J comp Sci Tech. 2019;34:81-96.

5. Li Y, Zhang M, Wang X. The role of edge computing in autonomous systems: a survey.
IEEE Trans Netw Serv Manage. 2020;17:1170-83.

6. Chen X, Wang F, Zhang C. A deep learning-based approach for anomaly detection in
industrial IoT systems. IEEE Internet Things J. 2020;7:4526-37.

7. Yang Z, Li X, Liu J, et al. A deep learning-based approach for fault diagnosis of wind

turbines. IEEE Trans Ind Inform. 2019;15:326-36.

8. Davis RM, Garcia SA, Perera T, et al. Scalable edge computing for AI. IEEE Trans Big
Data. 2022;8:405-17.

9. Li SF, Chen M, Mao Y, et al. Optimizing resource utilization in edge computing. ACM

Trans Computing Syst. 2021;39:1-23.

10. Rashtchian C, Singh M, Weng S. Energy-efficient AI for edge devices: a review. IEEE

Trans Neural Netw Learn Syst. 2021;32:4678-92.

11. Sze V, Chen YH, Yang TJ, et al. Efficient processing of deep neural networks: a tutorial
and survey. Proceedings of the IEEE. 2017;105:2295-329.

12. He Z, Zhang L, Liu Y. Efficient deep learning for edge devices: a survey. IEEE Access.
2022:25439-59.

ISSN 2563-7568

Int J Auto AI Mach Learn, Vol 4, Issue 2, December 2024 132

13. Cheng X, Wang F, Zhang, C. A deep learning-based approach for anomaly detection in
industrial IoT systems. IEEE Internet Things J. 2017;4:1234-45.

14. Wu Y, Chen Q, Wang W, et al. Improving model performance. J Mach Learn Research.

2016;17:1-30.

15. Han S, Mao H, Dally WJ. Deep compression: compressing deep neural networks with
pruning, trained quantization and huffman coding. Arxiv Preprint. 2015:1510.00149.

16. Molchanov AV. Quantifying uncertainty in deep learning: a survey. Arxiv Preprint.

2016:1706.05759.

17. Hinton GE, Srivastava N, Krizhevsky A, et al. Deep neural networks for acoustic

modeling in speech recognition: a review. IEEE Signal Process Mag. 2015;29:107-25.

18. Sun Y, Wang F, Zhang C. A deep learning-based approach for anomaly detection in
industrial IoT systems. IEEE Internet Things J. 2019;6:8753-63.

19. McMahan B, Moore E, Ramage D, et al. Communication-efficient learning of deep

networks from decentralized data. 20th International Conference on Artificial
Intelligence and Statistics, FL, USA. 2017.

20. Bonawitz K, Ivanov V, Ramage D. Practical secure aggregation for federated learning. In

Advances in Neural Information Processing Systems, New Orleans, LA, USA. 2022.

21. Yang Y, Lin J, Zhang X. Real-time edge AI inference: algorithms and hardware
considerations. ACM Computing Surveys. 2021;54:1-36.

22. Kang Y, Li Z, Zhang Y. A deep learning-based approach for fault diagnosis of wind

turbines. IEEE Trans Ind Inform. 2017;13:2105-14.

23. Jouppi NP, Yoon DH, Kurian G, et al. A domain-specific supercomputer for training

deep neural networks. Communications of the ACM. 2020;63:50-9.

24. Wei X, Wang F, Zhang C. A deep learning-based approach for anomaly detection in
industrial IoT systems. IEEE Internet Things J. 2021;8:2345-56.

25. Shafique U, Khan SU, Raza SA. A review of edge computing technologies and
applications. J Netw Comput Appl. 2020;169:102713.

