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Abstract 
 
What traveler features should be considered when designing airline travel insurance policies, 
and can predictive modeling enhance the accuracy of purchase predictions? Motivated by the 
increased need to safeguard investments due to frequent flight interruptions and cancellations 
during the COVID-19 pandemic and its travel restrictions, we investigate the uptake of flight 
travel insurance using predictive models. This study applies various machine learning 
techniques to a dataset consisting of 1,987 travelers, examining whether they purchased travel 
insurance (a binary classification problem). Performance metrics such as misclassification rate, 
precision, recall, F-score, and the area under the receiver operating characteristic curve (AUC) 
are used to assess model effectiveness. The models were optimized using cross-validation on 
the training data. Among the models tested, eXtreme Gradient Boosting Machine (XGBoost) 
achieved the highest accuracy rate of 86%, along with the best AUC, precision, recall, and 
specificity, indicating a 98% accuracy in predicting who will purchase travel insurance. Other 
robust models, such as ensemble methods and neural networks, also demonstrated strong 
performance, with similar AUC and precision scores. Features such as annual income, age, 
travel history, and education history were found to be the most significant predictors, while 
chronic disease history had little impact. Parsimonious predictive models, using only the most 
important variables, yielded better performance. Our findings highlight the critical role of 
predictive accuracy in helping insurers mitigate the financial risk due to travel interruptions. 
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1. Introduction 
 
As air travel continues to be a cornerstone of modern connectivity for individuals, businesses, 

and governments, ensuring travelers' safety and financial security has become increasingly 

vital. Travel insurance serves as a critical safeguard against unexpected financial losses during 

domestic or international trips, covering events such as trip cancellations, lost luggage, and 

emergency medical evacuations [1]. This demand for travel insurance has grown significantly 

in recent years. According to the United States Travel Insurance Association, Americans spent 

approximately $4 billion on travel protection in 2018, reflecting a 41% increase since 2016, with 

the number of people covered increasing by more than 10.7% from 2021. The increasing 

number of insured travelers underscores a growing awareness of the benefits of such policies. 

 

The COVID-19 pandemic highlighted the indispensable role of travel insurance. The 
widespread travel restrictions disrupted plans globally, leaving many uninsured travelers 
financially vulnerable. Forbes (2020) reported that flight cancellations impacted 62% of 
American adults, with many losing money due to a lack of insurance. While some passengers 
received vouchers or refunds, these cases highlighted the financial risks faced by uninsured 
travelers. Post-pandemic, intermittent disruptions—including weather-related cancellations 
and strikes—have reinforced the necessity of travel insurance as a fundamental component of 
trip planning. Consequently, policies offering trip cancellation and interruption benefits 
accounted for nearly 90% of travel protection products purchased in 2018. 
 
Despite the increasing adoption of travel insurance, research exploring factors influencing its 
purchase behavior remains limited. Existing studies primarily emphasize qualitative analyses 
or focus on the medical aspects of insurance [2,3]. While recent works by Karl and Kerr and 
Kelly [4,5] delve into risk perception and uncertainty in travel decisions, they do not address 
predictive modeling of insurance purchases. This gap calls for a deeper understanding of the 
demographic, social, and economic factors driving consumer behavior. Designing targeted 
insurance programs necessitates insights derived from predictive analytics, offering insurers 
actionable strategies to optimize product design and marketing. 
 
Advances in machine learning (ML) have revolutionized predictive analytics in the insurance 
sector. Predictive modeling has been employed for risk mitigation in various insurance sectors 
for streamlining the underwriting and claims processes, computing pure premiums, detecting 
fraud in the insurance industry and in health analytics [6-10]. Among the consistently used 
ML techniques, XGBoost, random forests, and neural networks provide superior predictive 
accuracy compared to traditional statistical models such as logistic regression [11]. Feature 
selection approaches, including SHAP values, enhance model interpretability and ensure 
actionable insights for insurers [12]. Additionally, addressing challenges like data imbalance 
using methods such as SMOTE has improved the fairness and reliability of models, 
particularly for predicting rare events [13].  
 
This research makes significant contributions to both theory and practice by integrating 
machine learning approaches to predict travel insurance purchases. It compares traditional 
statistical methods with cutting-edge models to evaluate predictive performance and 
economic implications. By focusing on feature selection, model robustness, and practical 
applications, the study provides a comprehensive framework for designing personalized 
insurance products and effective marketing strategies. Additionally, it examines the broader 
economic implications of predictive modeling, highlighting its potential to optimize risk 
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assessment, reduce operational costs, and improve customer retention. By situating predictive 
modeling within the context of the travel insurance sector, this research addresses critical gaps 
in existing literature while offering actionable insights for insurers to navigate an increasingly 
dynamic market. Insights from predictive models allow insurers to target potential customers 
with tailored offers, increasing conversion rates [14,15]. Consequently, predictive models in 
travel insurance can lead to automation in customer segmentation and pricing strategies that 
enables insurers to set premiums that reflect individual risk, ensuring profitability and 
reducing underwriting costs while remaining competitive. Adaptive pricing driven by real-
time data enhances customer satisfaction by offering more affordable options to low-risk 
travelers, making insurance more accessible. Subsequently, affordable and reliable travel 
insurance encourages more individuals to travel, indirectly supporting tourism and 
associated industries. 
 
The remainder of this paper is structured as follows: Section 2 reviews relevant literature on 
machine learning applications in insurance; Section 3 describes the methodology, including 
data sources, performance metrics, and cross-validation techniques. Section 4 presents the 
results and discusses their implications. Finally, Section 5 concludes with key findings and 
directions for future research. 
 

2. Related Studies in Insurance and Predictive Models 

 
Predictive modeling, also known as data mining, has been defined as abstracting useful 
information from available data using statistical and machine learning techniques [16]. 
Despite the host of data mining techniques and applications at present, studies into insurance, 
finance and economics are very few. One possible reason for this is the dearth of data for 
research. Employed six data mining techniques to examine the predictive accuracy of default 
of credit card clients using the sorting smoothing technique as a basis to select the artificial 
neural network as the best performing model [17]. Popular and some recent finance literature 
looking into credit fraud detection has had these classification techniques chosen as the best:  
artificial neural networks, support vector machines, discriminant analysis, k-nearest 
neighbors, logistic regression, Bayesian learning, and random forests [17-28] 
 
For insurance industries, using machine learning technology has the most important 
advantage of the data set facility. Every type of data whether it is structured, unstructured or 
semi-structured can be modified using machine learning. The use of machine learning is 
dependent on the worth chain, through cutting-edge accuracy, feature engineering, and, 
qualitatively, client conduct.  
 
Classification machine learning predictions in insurance have largely been spent analyzing 
data either in the auto insurance industry or data from insurance claims or fraud detection in 
auto insurance. Using artificial neural network, multinomial logistic regression, and decision 
trees, predicted auto insurance claims and concluded that the neural network performed 
better than the other two with a test accuracy of about 62% [29]. Wüthrich analyzed claims in 
liability insurance using the non-parametric classification and regression tree (CART) 
techniques to study feature information [30]. Ensemble models have been used multiple times, 
especially in credit scoring algorithms, as they are more stable and accurate in predicting the 
results and liabilities. In their research, Tsai C-F conclude that variance and bias are also 
known to be reduced by using ensemble models [31]. 
 
Since the invention of the eXtreme Gradient Boosting (XGBoost) technique in 2014, the 
machine learning literature has seen an uptick in its use and importance for classification 
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model prediction. Many data scientists have used this technique to achieve state-of-the-art 
results on a lot of challenges in predictive modeling. According to Chen and Guestrin an 
impressive 17 of 29 winning solutions of the Kaggle data science competitions used the 
XGBoost model [32]. The authors contributed to its literature by comparing the predictive 
accuracy of claims data from insurers such as Allstate Insurance using XGBoost, AdaBoost 
and neural networks. XGBoost performed best. It is also worthwhile to note that deep neural 
network was the second most used among the winning models for the Kaggle competitions. 
XGBoost is usually extremely good for tabular problems, and deep learning is the best for 
unstructured data problems. With both speed and performance provided by this algorithm, 
the implementation, acceptance, and love of XGBoost have grown exponentially in the last 5 
years. It is a highly optimized algorithm with the approach of parallel processing and tree-
pruning with the ability to handle missing values and regularization to avoid situations of 
bias and overfitting. 
 

2.1. Travel insurance literature 
 
Both risk perception and population characteristics are the key deciding factors in the 
purchasing willingness of travel insurance [32]. In fact, the higher the risk perception, the 
higher the demand for insurance. Lo, Cheung & Law found that the purchase of insurance, 
bringing extra cash, and searching for the latest information about the destination were the 
three most adopted risk-reduction strategies when planning future travel. Experienced 
travelers were more likely to use these three strategies than inexperienced travelers, who 
chose to seek advice from family or friends, seek advice from their travel agent, and not travel 
independently but travel in a tour group. In exploring the relationship between risk 
perception and the decision to travel to China, found the inclination to purchase travel 
insurance resulted from risk perception, willingness to pay a premium, medium length of 
stay, and higher monthly income. Al Mamun et al explored the willingness and purchase of 
travel insurance for international travel among working adults during the COVID-19 
pandemic using partial least squares modeling and concluded factors that influence attitude 
toward travel insurance include insurance literacy about the product, perceived health risk of 
travel, and one's health consciousness [1]. They suggest an emphasis on travel insurance 
literacy and perceived health risk education among working adults to encourage them to 
purchase travel insurance policies for traveling abroad. 
 

2.2. Predictive models 

 
Classification models are commonly employed for categorical response variables, making 
them suitable for this study’s focus on a two-class binary classification problem. Recent 
advancements in machine learning for insurance modeling have introduced innovative 
approaches to improve classification accuracy and interpretability. Notable contributions 
include Althati, which explores ensemble methods for underwriting optimization, who 
examines neural network architectures for predicting claim probabilities, and utilize 
explainable AI to enhance decision-making in policy pricing [6,32]. These studies stress the 
importance of leveraging cutting-edge classification tools to address specific challenges in the 
insurance domain. In this paper, we explore the predictive accuracy of the classification 
models below, adapting and comparing their performance for travel insurance purchase 
prediction. 
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2.2.1 Logistic regression 
 
Logistic regression measures the relationship between a categorical response variable and 
some independent variables by estimating probabilities using a logistic function, which is a 
cumulative logistic distribution. The conditional distribution of 𝑦 given x is a Bernoulli 
distribution because the dependent variable is binary. It is an alternative to Fisher’s 1936 
method, linear discriminant analysis, but does not require the multivariate normal 
assumption of the latter. It is well-understood, easy to use, remains one of the most used for 
data mining in practice, and therefore provides a useful baseline for comparing the 
performance of newer methods, and can produce a simple probabilistic formula of 
classification [17,20]. The major advantage of this approach is that it can produce a simple 
probabilistic formula of classification. 
 

2.2.2. K-Nearest Neighbors (KNN) 
 
The k-Nearest Neighbors algorithm is a non-parametric lazy learning method for supervised 
learning, where an object is classified by a majority vote of its neighbors, with the object being 
assigned to the class most common among its k nearest neighbors. In learning systems, 
generalization performance is affected by a trade-off between the number of training 
examples and the capacity (e.g., the number of parameters) of the learning machine. The major 
advantage is that it is not required to establish a predictive model before classification. KNN 
does not perform any training when you supply the training data but rather stores the data 
during the training time and does not perform any calculations. Hence its lazy-learner 
attribute. It does not build a model until a query is performed on the dataset. This makes KNN 
ideal for data mining. 
 

2.2.3. Discriminant analysis 
 
Discriminant Analysis, also known as Fisher’s rule, is a classification technique which projects 
onto a line an n-dimensional data by maximizing between-class mean and minimizing within-
class variance and performs classification in this one-dimensional space. We have two 
common forms of Discriminant Analysis used in data mining: Linear Discriminant Analysis 
(LDA) and Quadratic Discriminant Analysis (QDA). According to James, Witten, Hastie and 
Tibshirani, the LDA assumes the predictor is drawn from a multivariate Gaussian distribution 
with a class-specific mean vector and a common covariance matrix [33]. We need this model 
because when the classes are well-separated, the parameter estimates for the logistic 
regression model, the most used traditional classification technique, are surprisingly unstable. 
LDA does not suffer this problem and is even more popular with more than two response 
classes. Like the LDA, the QDA classifier results from assuming the observations from each 
class are drawn from a Gaussian distribution. QDA assumes a covariance matrix for each 
class, unlike the LDA. More recent methods include the Shrinkage Discriminant Analysis 
(SDA) and the Penalized Discriminant Analysis (PDA) which produced output identical to 
the logistic classifier in this research. 
 

2.2.4. Partial Least Squares (PLS) 
 
Partial Least Squares (PLS) is a well-known dimension reduction method which has been 
adapted for high dimensional classification problems in biology. It is a versatile method that 
can be used to predict either continuous or discrete/categorical variables. Classification with 
PLS is termed PLS-DA, where the DA stands for discriminant analysis. The PLS-DA algorithm 
has many favorable properties for dealing with multivariate data; one of the most important 
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of which is how variable collinearity is dealt with, and the model's ability to rank variables' 
predictive capacities within a multivariate context. We can say that PLS-DA regularizes in a 
way that behaves like squeezing the pooled covariance matrix of the LDA into a spherical 
shape the more the fewer latent variables are used. 
 

2.2.5. Naïve Bayes Classifier (NB) 
 

The naive Bayes classifiers are a form of simple "probabilistic classifier" that uses Bayes' 
theorem with strong (naive) independence assumptions. Naive Bayes classifiers are highly 
scalable, requiring a set of parameters that is proportional to the number of attributes. The 
difference between QDA and NB is that NB assumes independence of the features, which 
means the covariance matrices are diagonal matrices. This feature often tends to be an 
explanation for the poorer efficiency of NB when compared to QDA. 
 

2.2.6. Regularization methods 
 

Sometimes we need to choose between low variance and low bias. There is an approach that 
prefers some bias over high variance, this approach is called Regularization. It works well for 
most of the classification problems. Regularization methods involve fitting a model 
containing all p predictors but the estimated coefficients are shrunken toward zero relative to 
their least squares estimates. Hence, shrinkage methods can also perform variable selection. 
The shrinkage has the effect of reducing variance and may offset increased bias. Ridge 
regression and Lasso regression are the two most common forms of regularization, which seek 
to control variance by adding a tuning parameter λ. A third form called Elastic Net regression 
is the middle ground between ridge and lasso. The mathematical representation below will 
help to explain the three. The regular least-squares criterion minimizes the least-squares of 
the error plus a regularization term that is a product of a constant (α) and a sum of coefficients 
(beta) 
 
𝑚𝑖𝑛{∑(𝑦 − 𝑦𝑖)2 + [𝛼 𝜆 ∑ |𝛽| + (1 − 𝛼)𝜆 ∑ |𝛽|2]}                                                (1) 

 
For lasso, 𝛼, which is the penalty coefficient, is set to 1 which makes the regularization term, 
a sum of absolute deviations. For ridge, the objective function is the residual sum of squares 
plus the product of the penalty, 𝛼 which is 1, and the sum of squares of the coefficients. Both 
use a regularization parameter, 𝜆, to control for variables and to balance minimizing the RSS 
versus minimizing the coefficients. When 𝜆 = 0, results are the same as regular linear 
regression: you have removed the penalty from the ridge regression. Coefficients get closer to 
zero as 𝜆 increases to infinity. Model complexity increases as 𝜆 increases. 𝜆 is just a scalar that 
should be learned from the data using cross-validation (tuning), always between 0 and 1. As 
opposed to the ridge, the lasso will always perform variable selection on those coefficients 
being shrunk toward 0 – they will be eliminated with a lasso but not with ridge regression. 
Elastic Net regression uses a weighted combination of both ridge and lasso regressions. From 
equation 1, 𝛼 is always between 0 and 1. Elastic net has the power to do variable selection and 
shrink some coefficients to 0 as does lasso. 
 

2.2.7. Decision trees and ensemble methods 
 
The popularity of decision tree models in data mining arises from their ease of use, flexibility 
in terms of handling various data attribute types, and interpretability. Single tree models, 
however, can be unstable and overly sensitive to specific training data. Ensemble methods 
seek to address this problem by developing a set of models and aggregating their predictions 
in determining the class label for a data point. While there are numerous implementations of 
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decision trees, one of the most well-known is the C5.0 algorithm. The C5.0 algorithm has 
become the industry standard for producing decision trees because it does well for most types 
of problems directly out of the box. Compared to more advanced and sophisticated machine 
learning models, the decision trees under the C5.0 algorithm generally perform nearly as well 
but are much easier to understand and deploy. An advantage of the C5.0 algorithm is that it 
takes care of many of the decisions automatically using reasonable defaults using pruning. Its 
overall strategy is to post-prune the tree. It does this by first growing a large tree that overfits 
the training data. Afterward, nodes and branches that have little effect on the classification 
errors are removed. 
 
Random decision forests (RF) are an ensemble learning method of classification (or regression) 
trees operated by constructing a multitude of decision trees at training time and outputting 
the class that is the mode of the classes (classification) or mean prediction (regression) of the 
individual trees. Random forests correct the training overfitting problem of decision trees. The 
training algorithm for random forests applies to the general technique of bootstrap 
aggregating, or bagging to tree learners, by using a modified tree learning algorithm that 
selects, at each candidate split in the learning process, a random subset of the features. 
Random forests are computationally efficient since each tree is built independently of the 
others. With a large number of trees in the ensemble, they are also noted to be robust to 
overfitting and noise in the data. The number of attributes, p, used at a node and the total 
number of trees, ntree, in the ensemble are user-defined parameters. The error rate for a 
random forest has been noted to depend on the correlation between trees and the strength of 
each tree in the ensemble, with lower correlation and higher strength giving lower error. The 
number of random variables randomly sampled as candidates at each node split for 

classification is √𝑝. Attribute selection at a node is based on the Gini index, though other 
selection measures may also be used. Breiman proved random forests have comparable 
performance to the other modern sophisticated techniques like support vector machines, 
boosting, and artificial neural networks [34]. Random forest models are much more flexible 
than linear models and can model complicated nonlinear effects as well as automatically 
capture interactions between variables. They tend to give very good results on real-world 
data. 
 
Boosting is a machine learning meta-algorithm for regression and classification problems that 
produces a prediction model in the form of an ensemble of weak prediction decision-tree 
models. Most boosting algorithms iteratively learn the distribution of weak classifiers and add 
them to a final strong classifier through a weighting and re-weighting mechanism related to 
the weak learners' accuracy. Thus, future weak learners focus more on the examples that 
previous weak learners misclassified. In this research, two types of boosting called gradient 
boosting machine (GBM) and eXtreme gradient boosting (XGBoost) machines are employed 
and have been proven to improve performance and are very popular as noted in the literature 
review section. Computational capacity-wise, GBM is many times faster than XGBoost and is 
a much better approach when dealing with large datasets. GBM is boosting with errors 
minimized by gradient descent. XGBoost executes gradient boosted decision trees designed 
for speed and performance.  
 

2.2.8. Support Vector Machines (SVM) 
 
A support vector machine model is the representation of the points in space mapped so that 
examples of the separate categories are divided by a wide clear gap. It then maps new 
examples into that same space and the predicted to belong to a category based on which side 
of the gap they fall on. It is a non-probabilistic binary linear classifier. Bhattacharyya states 
that SVMs are statistical learning techniques that are very successful in a variety of 
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classification tasks and that several unique features of these algorithms make them especially 
suitable for binary classification problems like predicting insurance purchase choices [20]. 
SVMs are linear classifiers that work in a high dimensional feature space that is a non-linear 
mapping of the input space of the problem at hand. An advantage of working in a high-
dimensional feature space is that in many problems the non-linear classification task in the 
original input space becomes a linear classification task in the high-dimensional feature space. 
SVMs work in the high dimensional feature space without incorporating any additional 
computational complexity. The simplicity of a linear classifier and the capability to work in a 
feature-rich space make SVMs attractive for insurance purchase detection tasks where the 
highly unbalanced nature of the data (purchase or do not purchase cases) makes extraction of 
meaningful features critical to the detection of non-purchase transactions is difficult to 
achieve. The strength of SVMs comes from two important properties they possess kernel 
representation and margin optimization. In SVMs, mapping to a high-dimensional feature 
space and learning the classification task in that space without any additional computational 
complexity is achieved using a kernel function. We consider three kernels: linear, radial, and 
polynomial. Polynomial kernels are computationally slow but can give better predictions than 
radial or linear kernels. The second property of SVMs is the way the best classification 
function is arrived at. SVMs minimize the risk of overfitting the training data by determining 
the classification function (a hyper-plane) with a maximal margin of separation between the 
two classes. This property provides SVMs with very powerful generalization capability in 
classification. 
 

2.2.9. Neural Networks (ANN, MLP) 
 
The goal of the neural network is to solve problems in the same way that the human brain 
would, although several neural networks are more abstract. Theoretically, artificial neural 
networks (ANN) are highly robust in data distribution and can handle incomplete, noisy, and 
ambiguous data. They are well suited for modeling complex, nonlinear phenomena ranging 
from financial management, and hydrological modeling to natural hazard prediction. For any 
neural computing, training time is always the biggest bottleneck and thus, every effort is 
needed to make training effective and affordable. Training time is a function of the complexity 
of the network topology which is ultimately determined by the combination of hidden layers 
and neurons. A trade-off is needed to balance the processing purpose of the hidden layers and 
the training time needed. One of the major developments in neural networks over the last 
decade is the model combining or ensemble modeling. A network without a hidden layer is 
only able to solve a linear problem. To tackle a nonlinear problem, a reasonable number of 
hidden layers is needed. The ANN plot for the complete data with two hidden layers is found 
in Appendix C2. The plot shows the network interconnectedness and how the model activity 
functions to predict the probability of travel insurance purchase in this case.  
 
The application of artificial neural networks using modern hardware is called deep learning. 
It allows the development and training, and the utilization of much larger neural networks, 
thus including more layers, than what was previously thought possible. Three cases: MLPs, 
CNNs, and RNNs. These three classes of deep learning networks provide a lot of flexibility 
and have proven themselves over decades to be useful and reliable in a wide range of 
problems. They are multilayer perceptron (MLP), convoluted neural network (CNN), and the 
recurrent neural network (RNN). MLPs are suitable for classification prediction problems 
where inputs are assigned a class or label and so are considered in this literature. A multilayer 
perceptron consists of at least one of an input layers, a hidden layer, and an output layer 
making up its nodes. Each node as a neuron uses a nonlinear activation function, with the 
exception of the input node. It uses a supervised learning technique called backpropagation 
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for training. Its multiple layers and non-linear activation What distinguish the MLP from a 
linear perceptron are its number of layers and non-linear activation. It can distinguish data 
that is not linearly separable. Preparing the data for a neural network is very important as all 
the covariates and responses need to be numeric. In our case, we have all of them categorical. 
The caret package in R software allows us to quickly create dummy variables as our input 
features. 
 

3. Methodology 
 

3.1. Data and data pre-processing 
 
We use a publicly available dataset extracted from the Kaggle Data Science community 
website. This data has 1,987 observations of travelers and contains 9 variables including a 
binary response variable, Travel Insurance, having entries "Yes" or "No" representing the 
purchase choice of the observation. Table 1 presents a numerical summary of each variable in 
the data and their level of coding. To improve the data quality and produce more reliable 
results we need a thorough preparation of the data. This helps eliminate some of the noise in 
the data which may be caused by incomplete or missing data [35]. We re-coded all two-level 
categorical variables such as Travel Insurance (Yes for 1, No for 2), Employment Type (1 for 
Government Sector, 2 for Private Sector/Self Employed), Chronic Disease (1 for Yes, 0 for No), 
Graduate Or Not (1 for Yes, 0 for No), Frequent Flyer (1 for Yes, 0 for No), and Ever Traveled 
Abroad (1 for Yes, 0 for No). There were no missing values in the dataset. The table shows 
that of the 1987 observations, 36% of the travelers did purchase insurance, 85% are graduates, 
28% have a history of chronic illness, 21% are Frequent Flyer passengers, and 19% indicated 
that they have traveled abroad in the past. Each flyer has approximately 5 family members, 
most likely works in the private sector or is self-employed and has an annual income of about 
933,000 on average.  
 
Figure 1 gives a graphical representation of the distribution of some of the variables. The 
average age of the observations is around 30 years with a minimum flyer age of 25 years and 
a maximum of 35 years. The modal age of the data is 28 years having a frequency of 506 
observations. The pie chart shows the distribution of the response variable, Travel Insurance, 
discussed above: ~36% bought travel insurance while the rest did not.  The distribution of the 
variable, Family Members, is skewed to the right. The plot on the bottom right of Figure 1 
represents the histogram of frequency density of the annual income of the travelers. It has 
three peaks meaning annual income is tri-modal: one peak occurring at 300,000 to 700,000, the 
second one from 700,000 to 900,000, and the last one from 900,000 to 1,500,000. Graphical 
distributions of the other predictor variables are in Appendix A, corroborating the summary 
in Table 1. 
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Table 1: Summary statistics of data. 
 

S. no Variable Levels Mean Median Mode Min Max N 

0 Travel 

insurance 

Yes (1), 

No (0) 

0.36 0 0 0 1 1987 

1 Age 25-35 29.65 29 28 25 35 1987 

2 Employment 

type 

GS (1), 

PS/SE 

(2) 

1.71 2 2 1 2 1987 

3 Graduate or 

not 

Yes (1), 

No (0) 

0.85 1 1 0 1 1987 

4 Annual 

income 

300K – 

1.8M 

933k 900K 800K 300K 1800K 1987 

5 Family 

members 

2, 3, 4, 

…, 9 

4.75 5 4 2 9 1987 

6 Chronic 

diseases 

Yes (1), 

No (0) 

0.28 0 0 0 1 1987 

7 Frequent 

flyer 

Yes (1), 

No (0) 

0.21 0 0 0 1 1987 

8 Ever 

traveled 

aboard 

Yes (1), 

No (0) 

0.19 0 0 0 1 1987 

GS*= Government sector, PS = Private Sector, SE= Self-employed ***300k= 300,000 
 

 
 

 
 
Figure 1: Distribution of variables. 
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The data is analyzed using Microsoft Excel and the open-source R Studio (version 
2022.03.2+492) software due to its manipulability, reproducibility, and depth of packages for 
predictive analysis. Since the gold standard of model validation is out-of-sample evaluation, 
we split the dataset randomly for training and testing. In some preliminary analysis, we used 
the approach by Leach and Thayasivam to find the optimal splitting for the predictive models 
used with our dataset [18]. A 25%/75% train/test split was the most optimal for our research 
and so we used that for our analyses. 25% of the data is held out for testing the accuracy of 
our models against unseen data, while the remaining 75% is used for training and cross-
validating our models. Thus 1491 observations are used for training the model and 496 for 
testing the model. The 25%/75% random sampling split of the data into training/testing 
ensures the same percentage of “Yes” (~36%) and “No” (~64%) responses to variable Travel 
Insurance existing in both splits as in the full data, thus removing any biases in the ordering 
of the dataset. Before each code is run, we set a seed for the same results to be reproduced for 
a model if run multiple times with no change in code.  
 

3.2. Classification performance metrics 
 

3.2.1. Model evaluation-misclassification rate, sensitivity, specificity 
 
An evaluation metric measures model performance after training. The basic idea of model-
wide evaluation is that performance measures are calculated by multiple threshold values. 
Most machine learning models produce some kind of scores in addition to predicted labels. 
These scores can be discriminant values, and posterior probabilities, among others. Model-
wide evaluation measures are calculated by moving threshold values across the scores and 
selecting a single threshold value results in determining predicted labels. The scores predicted 
by our models fall in the range of 0.0 to 1.0. We used the default 0.5 probability threshold 
cutoff. A label is predicted as “positive” if the corresponding score is larger than a certain 
threshold value (0.5 in this case) or predicted as “negative”, otherwise. Positive class for our 
response variable, Travel Insurance, is a "No" and negative class is a "Yes". 
 
The two main measures of classification performance commonly noted in machine learning 
literature are considered as performance measures in this research: the misclassification rate 
and the area under the receiver operating characteristic curve (AUC). The misclassification 
(error) rate is the most common and intuitive measure derived from the confusion matrix. It 
is calculated as the number of all incorrect predictions divided by the total number of the 
dataset used for the prediction (TP+TN)/(TP+TN+FP+FN). Antonymous to the error rate is 
the accuracy rate which is calculated as (1–error rate) %. We report the accuracy values for 
consistency with the other performance measures considered.  
 
The confusion matrix is a two-by-two table that contains four outcomes produced by a binary 
classifier. Various measures, such as error rate (1 – accuracy), specificity, sensitivity, precision, 
and F1 score are derived from the confusion matrix. Figure 2 is a sample confusion matrix 
derived as an output from our logistic regression model on the data. Results for the other 
models are captured in Table 2. Also called the True Positive Rate (TPR) or Recall, Sensitivity 
tells us what proportion of the positive class (“No”) got correctly classified. In our case, it 
helps answer the question “What percentage of the people who traveled actually did not buy 
travel insurance?”. It is calculated as TP/(TP+FN). Similarly, Specificity (or True Negative 
Rate) is the proportion of the negative class (“Yes”) classified correctly after prediction. It 
answers the question, “What percentage of the people who traveled actually did buy travel 
insurance?” It is calculated as TN/(TN+FP). The 0.5 threshold can be adjusted depending on 
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whether we want to improve either sensitivity or specificity. Since we would like to know 
what impacts people’s inability to purchase travel insurance, incorrectly classifying the “No” 
scores will not be in our best interest. Hence, improving sensitivity is ideal in our research: 
the higher the better. Precision score deals with only the positive predictions (“No” in our 
case). It is calculated as TP/(TP+FP). F-score is the harmonic mean of sensitivity and precision. 
Since both sensitivity and precision deal with the positive class, the F-score helps to 
summarize their predictive performance in one output. In this research, we used the F1 score 
and so assumed a 𝛽 =1. It is calculated as (2*TPR*Precision)/(TPR+Precision). The F1 score 
does not care about how many true negatives are being classified. When working on an 
imbalanced dataset that demands attention on the negatives, Balanced Accuracy (the 
weighted average of train accuracy and test accuracy) does better than F1. Balanced accuracy 
is a better metric for this than F1 in cases when our focus is on both positives and negatives 
and not just one. When working on problems with heavily imbalanced datasets and you care 
more about detecting positives than detecting negatives, as is the case in this research, then 
you would prefer the F1 score more. 
 
Tables 2 and 3 report the results for all these metrics. The best error rate is 0%, whereas the 
worst is 100%. For all the other metrics reported, the best is 100% and the worst is 0%. Except 
for the accuracy of the training data, the values reported in Tables 2 and 3 are from the 
predictions based on the test data. Balanced Accuracy values are reported in Appendix B. In 
the figure below, out of the 496 observations held out for testing the trained models, 311 and 
111 were correctly classified as positives (“No”) and negatives (“Yes”) which gives an 
accuracy of 85.1% (= (311+111)/496). This implies a misclassification rate of 14.9%. The 
statistics for the other performance measures can be seen in the confusion matrix exhibit.  
 

 
 
Figure 2: Sample confusion matrix showing the four possible outcomes for a two-class classification 
problem. 
 

3.2.2. Area under the Receiver Operating Characteristics (ROC) curve (AUC) 
 
Overall accuracy (minimum error rate) is not a sufficient performance indicator when there is 
significant class imbalance in the data since a default prediction of all cases into the majority 
class will show a high-performance value (Bhattacharyya et al, 2011). To supplement this, the 
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area under the receiver operating characteristic (ROC) curve (AUC), calculated as the space 
occupied by the ROC curve, is also used as a classification performance metric. Ling, Huang 
and Zhang (2003) argue that the AUC is a better measure than accuracy in comparing learning 
algorithms because the curve evaluates all possible thresholds for splitting predicted 
probabilities into predicted classes without worrying about threshold probability calibration 
[36]. ROC has been used in a wide range of fields, and the characteristics of the plot are also 
well studied. The ROC plot shows the trade-offs between specificity and sensitivity. It helps 
to visualize how well a machine learning classifier is performing. The AUC, reported as a 
percentage value, is the numerical measure of the ability of a classifier to distinguish between 
classes. The AUC score of a random classifier is 0.5 and should lie on a 45-degree baseline. 
Meaningful classifiers are greater than 0.5 and a high AUC means a better model which can 
help separate positive and negative classes. Figure 3 and Appendix E show the ROC plot of 
all the models reported in this research and their corresponding AUC values. 
 

3.3. Optimization for the ML techniques 
 

3.3.1. Hyper parametrizing 
 
Cross-validation (CV) is a sampling method used to compare and select parameters for a 
machine learner on unseen data. This results in estimates with lower bias and modest variance 
than other traditional methods. Data is split into folds. For this research, we used 10-fold 
repeated cross-validation [ISRL, 2013]. This gave a better accuracy compared to either a 5-fold 
or 10-fold cross-validation without repetition. Repeated k-fold cross-validation helps to 
improve the estimated performance of a predictive model. This involves simply repeating the 
cross-validation procedure multiple times and reporting the mean result across all folds from 
all runs. This means the result is expected to be a more accurate estimate of the true unknown 
underlying mean performance of the model on the dataset, as calculated using the standard 
error. Using the 10-fold repeated cross-validation, we tuned our training models. Most of the 
models require a tuning parameter tune Length which helps explore more potential models 
for the best fit. Those that have larger values than the model could take are automatically 
truncated leading to better run times.  
 
Logistic regression, LDA and QDA do not tune any parameter. The cross-validated k in our 
k-NN model is 64 after looping from 1 through 100 nearest neighbors. This means that our 
model predictors used 64 nearest neighbors to optimally predict what the next predicted class 
of Travel Insurance will be. The regularization models optimize the λ for computing the best 
accuracy. To achieve the optimum model, as can be seen in Table 2 and Appendix B2, ridge 
regression uses 0 α and an approximate 0.03 λ, lasso regression uses 1 α and 0.01 λ while the 
elastic net regression uses an α of 0.17 and λ of 0.38 – implying a mixture of 38% lasso 
regression and 62% ridge regression. 
 
The primary tuning parameter of random forest models is mtry. This tuning parameter 
controls the number of features that go into each split. The default mtry is the square root of 
p, where p is the number of predictors used. Another important parameter is the number of 
trees at each split, ntree = 200 gave the least training error. Appendix G shows that the highest 
accuracy achieved from repeated cross-validation of the RF model occurred when 2 predictors 
are used.  
 
With SVM, the best accuracy is produced by the polynomial kernel of degree 3 with cost 2 and 
scale=0.1 located in Appendix C1. With artificial neural network (ANN), a size of 2 and a 
decay of 0.29 gave the best prediction. The neural interconnectedness of the ANN for our 
model is shown in Appendix C2. Similarly, testing different values of the three layers of MLP, 
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we used 10 layers for all three to get the optimum metric values. The best-tuned hyper-
parameters for all the models are reported in Appendix B. A summary of these is presented 
in the last columns of Tables 2 and 4. 
 

3.3.2. Data balance 
 
The class imbalance problem arises when the data have a proportion of one class significantly 
higher than another. This could be alleviated by various techniques including oversampling 
of the minority class or under sampling of the majority class to balance both classes. It is 
expected that when there is data imbalance, the prediction model will be more accurate for 
skewed classes (positive class). Since the sensitivity and specificity for most of our models 
considered have identical values, we are confident not treating for data balance. In almost all 
our models, the specificity numbers are greater than the sensitivity numbers. Even though the 
negative class (“Yes”) is the minority class and since detecting the class who do not purchase 
travel insurance (“No”) is of superior importance to us, we do think our model inherently 
solves the issue of data imbalance based on the results in Table 3. Nevertheless, neither under 
sampling nor oversampling provided better outputs for our final models. Also, from the 
output in each of our final predictive models, the confusion matrix additionally spits out a p-
value. This p-value is used to evaluate a one-sided test to see if the test accuracy is better than 
the No Information Rate (NIR). The NIR is the largest class percentage in the data. This will 
be the positive (“Yes”) class in our case since 64% of the travelers bought travel insurance. So 
NIR is about 64%. If you have a class imbalance, you might want to know if your model's 
accuracy is better than this proportion. This test answers the question, “Is test accuracy any 
better than the NIR of 64%? For all our models considered, the answer is yes, the accuracy is 
better since their corresponding p-values are all <0.000 and so we will reject the null 
hypothesis.  
 

4. Results and Discussion 
 

4.1. The full models 
 

Tables 2 and 3 present the output results of 17 predictive models out of over 20 models tested. 
These supervised learning models were selected based on what has been used in the literature 
in the past, based on new models that performed better than known ones in the literature, or 
some models not making it to this paper had near-same values for at least one of the models 
considered here.  From Table 2, we see that Elastic Net had the highest prediction for true 
positives (“Yes”) with 312 observations, followed closely with 311 by the XGBoost and RF 
classifiers. ANN had the largest correct classification of negatives with 112 observations 
followed by GBM, XGBoost and DT classifiers.  
 
Consequently, XGBoost produced the least test error of 14.9%, the highest accuracy of 85.1% 
on a 95% confidence interval of 81.6% to 88.1%. XGBoost had the best sensitivity of 82.5% and 
best specificity value of 93.3% which means that even though it is able to correctly classifier 
both positive and negative classes better than any of the predictive models considered using 
the 0.5 probability threshold cutoff, the XGBoost classifier can help predict the proportion of 
travelers who will purchase travel insurance in future more effectively. XGBoost also had the 
highest F1 score of 89.4% and the second highest Precision score of 97.5% only trailing that of 
Elastic Net by 0.3 percentage points. Because the Elastic Net model can correctly predict the 
positive classes, having the highest true positives (312) and the lowest false positives (7), it 
gave the highest precision rate 97.8% (since precision only cares about the positive class). 
Despite that statistic, the elastic net was one of the worst performing models with a test error 
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rate of 23% better than only LDA (23.4% – the worst) and ridge regression (23.2% – second 
worst). 
 
GBM, DT and RF models also produced higher accuracies of about 84.3%, comparable to the 
XGBoost test accuracy. The artificial neural network model (ANN) performed better than 
deep learning neural network model (MLP) in all the statistics but the AUC % of the test data. 
Logistic, discriminant analyses or regularizers had accuracies and sensitivities less than 80%. 
The Naïve Bayes, Elastic Net and RF classifiers had the biggest difference between sensitivity 
and specificity predictions with a difference of at least +10 percentage points. This means 
either of these models can best help predict one class (the "Yes" in our case) far better than the  
others. All train and test accuracies exceed 75%. 
 
Figure 3 graphs the ROC curves for all the predictive models. Any model on the 45-degree 
line is no more than a random classifier, and thus will have an AUC of 50%. Models with plots 
below that baseline are worse off. All our predictive models have their ROC curves above the 
45-degree line. Since the ROC curve is a plot that considers the predicting probability at all 
threshold levels, not just 0.5, the higher AUC values can be used as a complement to the 
accuracy parameters considered here when choosing a model. The best performing model 
should have a curve that hangs toward the top left of the ROC space. Such a plot will have the 
lowest bias and minimum variance. The Elastic Net model had the least area of 68.7% bettered 
slightly by the LDA at 70%. Our best performing models based on the AUC criteria are GB, 
XGBoost and DT, all with AUC = 79.5% followed by the SVM with 79.4%. MLP had an AUC 
of 77.2% which is better than that of the ANN of 74.5% despite the ANN model having the 
better accuracy. 
 
Ensemble methods have shown to be better predictive models for our Travel Insurance 
dataset. We can conclude that since XGBoost had the least misclassification rate, highest train 
and test accuracies, highest sensitivity, specificity, F1-score, AUC value and the second 
highest Precision rate, it is our best performing machine learning model for our data set. 
 
Table 2: Confusion matrix output results for full model. 
 

Model True + False + False – True –  Test total Hyper-parameters 

tuned 

Logistic 294 25 84 93 496  

k-NN 293 26 78 99 496 k=18 

Naïve Bayes 307 12 91 86 496 laplace = 0.5, 

usekernel = TRUE, 

adjust = 0.5 

LDA 297 22 94 83 496  

QDA 287 32 78 99 496  

SDA 295 24 83 94 496 Λ = 0.5 

PLS 282 37 72 105 496 ncomp=2 

Ridge 295 24 91 86 496 α = 0, λ = 0.02782559 

Lasso 296 23 91 86 496 α = 1, λ = 0.01 

Elastic Net 312 7 107 70 496 α = 0.1668101, λ = 

0.3764936 
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GBM 307 12 66 111 496 n.trees=50, 

interaction.depth=3, 

shrink=3, eta=0.3 

XGBoost 311 8 66 111 496 gamma=0, 

nrounds=100, 

max_depth=2, 

eta=0.3 

SVM 308 11 73 104 496 kernel=polynomial, 

degree=3, scale=0.1, 

694 support vectors, 

cost=2 

DT 307 12 66 111 496   

RF 311 8 70 107 496 ntree=200, mtry = 2 

ANN 302 17 65 112 496 size=2, decay=0.29 

MLP 301 18 68 109 496 layer1 = 10, layer2 

=10, layer3 = 10 

*Positive Class is “No”. Negative Class is “Yes” 

 

Table 3: Performance results of full model. 
 

Model 
  

Accuracy  
% 
Train Test 

95% CI* 
% 
Test 

Sensitivity 
% 

Specificity 
% 

Precision 
% 

F 
Score 
% 

AUC 
% 

Test Test Test Test Test 

Logistic 76.4 78.0 (74.1, 81.6) 77.8 78.8 92.2 84.4 72.1 

k-NN 78.6 79.0 (75.2, 82.5) 79.0 79.2 91.8 84.9 72.5 

Naïve Bayes 78.6 79.2 (75.4, 82.7) 77.1 87.8 96.2 85.6 72.4 

LDA 76.0 76.6 (72.6, 80.3) 76.0 79.0 93.1 83.7 70.0 

QDA 76.6 77.8 (73.9, 81.4) 78.6 75.6 90.0 83.9 73.0 

SDA 76.4 78.4 (74.5, 82.0) 78.0 79.7 92.5 84.6 72.8 

PLS 75.2 78.0 (74.1, 81.6) 79.7 73.9 88.4 83.8 73.9 

Ridge 76.6 76.8 (72.9, 80.5) 76.4 78.2 92.5 83.7 70.5 

Lasso 76.1 77.0 (73.1, 80.7) 76.5 78.9 92.8 83.9 70.7 

Elastic Net 76.7 77.0 (73.1, 80,7) 74.5 90.9 97.8 84.6 68.7 

GBM 82.7 84.3 (80.8, 87.4) 82.3 90.2 96.2 88.7 79.5 

XGBoost 82.8 85.1 (81.6, 88.1) 82.5 93.3 97.5 89.4 79.5 

SVM 81.6 83.1 (79.5, 86.3) 80.8 90.4 96.6 88.0 79.4 

DT 82.7 84.3 (80.8, 87.4) 82.3 90.2 96.2 88.7 79.5 

RF 82.6 84.3 (80.8, 87.4) 81.6 93.0 97.5 88.9 79.0 

ANN 80.6 83.5 (79.9, 86.6) 82.3 86.8 94.7 88.0 74.5 

MLP 80.8 82.7  81.6 85.8 94.4 87.5 77.1 

*95% confidence interval of test data accuracy. Sensitivity= TPR. No values for blacked-out box. 
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Figure 3: ROC curves for full models. 

 

4.2. Feature selection and variable importance 
 
During the analysis of our predictive models on the full dataset, we noticed that certain 
variables were very vital for prediction, while others were not so needed. This was first 
evident to us when we run the classification using Lasso and Elastic Net classifiers. Both 
automatically performed variable selection on our predictors before producing the accuracy 
outputs presented earlier. Lasso eliminated variables Chronic Disease, Graduate Or Not, 
Employment Type, and Family Members. The Ridge classifier shrunk the coefficients of 
Chronic Disease, Employment Type, and Graduate Or Not toward zero, portraying their less 
significance for that model. Elastic Net removed variables Age and Family Members in 
addition to Chronic Disease, Employment Type, and Graduate Or Not. A table of the 
coefficients of the regressions can be found in Appendix D2. Lasso and Elastic Net produced 
slightly better accuracy, specificity, precision, and F1 score than Ridge after variable selection.  
 
Based on this and what had been done in previous literature [37-42]. We decided to consider 
variable importance for all our models. Aside from boosting the accuracy of our models, 
feature selection helped reduce the run time of some of our predictive models considerably 
and boosted the accuracy of some of the models considered, particularly the most important 
ones from the original model. Figure 4 shows variable importance plots for selected models. 
These are the most and least important predictors: Logistic (best – Ever Traveled Abroad, 
Annual Income, Age; worst – Chronic Disease, Graduate Or Not, Employment Type), RF and 
XGBoost (best–Annual Income, Age, Ever Traveled Abroad; worst–Chronic Disease, 
Graduate Or Not, Employment Type, Frequent Flyer), ANN (best – Annual Income, Age, Ever 
Traveled Abroad, Family Members), Ridge, Lasso and Elastic Net has been discussed. 
Conclusively, the best model is one that includes a combination of Ever Traveled Abroad, 
Annual Income, and Age while excluding either any or a combination of Chronic Disease, 
Graduate Or Not, or Employment Type. 
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Figure 4: Variable importance plots. 
 

4.2.1. Subset selection algorithm 
 
The three widely used subset selection techniques, forward and backward stepwise and best 
subset selection, were also considered to aid in selecting the most important variables for a 
reduced model analysis. Forward stepwise selection starts with a model containing only the 
intercept and then adds predictors to the model, one at a time until all the predictors are in 
the model. The model adds the variable that gives the greatest additional improvement to the 
fit at each step and stops the iteration when it has sufficient predictors that give the lowest 
AIC value or the highest adjusted R-squared. The backward stepwise selection algorithm 
begins with the full least squares model containing all predictors (p=8), and then iteratively 
removes the least useful predictor one at a time until the optimal AIC is reached for the 
sufficient variables. Under the best subset selection algorithm, we fit a separate least squares 
regression for each possible combination of the 8 predictors and select the best model from 
among all the 2𝑝 combinations, in our case 28 =256 possibilities.   
 
Results of our subset selection algorithm are presented in Appendix F. All three methods 
chose all the variables to enter the model at the same time. Ever Traveled Abroad is seen as 
the most important contributory variable and so chosen first, followed by Annual Income and 
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then Family Members followed by Age. Variables Frequent Flyer and Graduate Or Not are 
the 5th and 6th chosen to enter the model. Chronic Disease and Employment Type are the 
final two (7th and 8th respectively) variables chosen to enter the model. This implies that these 
variables contribute less information to our model than the others. Using the adjusted R-
squared criteria, all three algorithms conclusively chose only the first 6 variables to be used 
for the model. This means we can do without the variables Chronic Disease and Employment 
Type and the model will be very well explained by the remaining variables. Statistically, these 
variables added minimal incremental explanatory power and negligible improvement in 
adjusted R-squared. From a practical standpoint, Chronic Disease may have limited relevance 
in predicting travel insurance purchases, as it could influence decisions related to health 
insurance more directly than travel-specific policies. Similarly, Employment Type likely 
introduces noise rather than meaningful variation, given its indirect relationship with travel 
behavior compared to variables like income and travel history. 
 
In order not to overfit the model any further and for the sake of parsimony, we used these six 
remaining variables to test the performance metrics of all our predictive models considered 
in Table 3. Note that variable importance plots on the full model of some of the machine 
learners also confirm this. We will call these new models Reduced Models.  
 
Although the dataset exhibits class imbalance, the models evaluated, including the reduced 
models, showed improved predictive performance over the No Information Rate (NIR) of 
64%, confirming their robustness despite the imbalance. We did not see improvements by 
using either oversampling or under sampling techniques, suggesting that the models, as 
developed, inherently account for the imbalance. The accuracy of all models considered 
exceeded the NIR threshold, with significant improvements in test accuracy, as evidenced by 
p-values < 0.000 in our hypothesis tests. 

 
4.2.2. The reduced models 
 
The optimal parameters for each predictive model changed. KNN now needed only 16 nearest 
neighbors to help with response predictor detection. RF still used mtry of 2 but with an 
increased ntree of 500 to achieve the optimum accuracy. ANN size increased from 2 to 5 and 
sacrificed some decay from 0.29 to 0.05. MLP, Naïve Bayes and SDA still used the same 
parameters to get their optimal results.  
 
The XGBoost model still performs the best on the full data with fewer predictors, even though 
there was no change in values from test accuracy, through sensitivity to AUC. The only 
improvement achieved by the XGBoost technique was on the train accuracy, increasing by 
+0.2% to 83.0%. KNN had the biggest increase in test accuracy by +1.8% followed by ANN 
and Ridge with +1.1% and +1.0% respectively. In addition to XGBoost, the test accuracies of 
GBM, DT, PLS, Elastic Net, and Naïve Bayes did not change. SDA, QDA and Logistic were 
the only predictive models that declined in test accuracies by -0.6, -0.2 and -0.2 respectively. 
In general, the test accuracy of the reduced models was slightly better than that of the full 
models with all the predictors. On average, both sensitivity and specificity increased. ANN 
had the highest increase for sensitivity (+2.8%) and the highest decrease for specificity (-5.0%). 
All train error rates decreased or remained the same but never increased, after variable 
selection. 
 
The AUC for most of the models did not change, especially the ensemble methods. No model 
had a decrease in AUC value, but notable increases are associated with KNN (+3.4%), ANN 
(+1.7%), LDA (+1.0%), and RF (+0.7%).  
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We managed to decrease the runtime of our full model and managed a very slight increase in 
out-of-sample accuracy. It has been shown that variable selection on the most important 
variables leads to marginal increases in accuracy of predictions for models, of which 
predictive models are no exception [37-39]. 
 
Table 4: Confusion matrix output results for reduced model. 
 

Model True + False + False – True –  
Test 

Total 
Hyper- parameters tuned 

Logistic 294 25 85 92 496   

k-NN 292 27 68 109 496 k=16 

Naïve Bayes 307 12 91 86 496 Laplace = 0.5, usekernel = TRUE, adjust = 0.5 

LDA 296 23 90 87 496   

QDA 288 31 80 97 496   

SDA 294 25 85 92 496 Λ = 0.5 

PLS 282 37 72 105 496 ncomp=2 

Ridge 299 20 90 87 496 Α = 0, λ = 0.08497534 

Lasso 297 22 91 86 496 Α = 1, λ = 0.01 

Elastic Net 312 7 107 70 496 Α = 0.1668101, λ = 0.3764936 

GBM 307 12 66 111 496 
n.trees=25, interaction.depth=4, shrink=0.15, 

eta=0.3 

XGBoost 311 8 66 111 496 
gamma=0, nrounds=50, max_depth=2, 

eta=0.3 

SVM 308 11 67 110 496 
kernel=polynomial, degree=3, scale=1, 82 

support vectors, cost=0.25 

DT 307 12 66 111 496   

RF 310 9 67 110 496 ntree=500,mtry = 2 

ANN 291 28  65   112  496 size=5, decay=0.05 

MLP 301 18 68 109 496 layer1 = 10 layer2 =10, layer3 = 10 

*Positive Class is “No”.  

 

Table 5: Performance results of reduced model. 
 

Model 
Accuracy  

% 

95% CI* 

% 

Sensitivity 

% 

Specificity 

% 

Precision 

% 

F Score 

% 

 

AUC  

% 

  
Train 

(Delta) 

Test 

(Delta) 

Test 

(Delta) 

Test 

(Delta) 

Test 

(Delta) 

Test 

(Delta) 

Test 

(Delta) 

Test 

(Delta) 

Logistic 
76.4  

(0.0) 

77.8  

(-0.2) 

(73.9, 

81.4) 
 

77.6  

(-0.2) 

78.6  

(-0.2) 

92.2  

(0.0) 

84.2  

(-0.2) 

72.1 

(0.0) 

k-NN 
80.5 

(+1.9) 

80.8 

(+1.8) 

(77.1, 

84.2) 

81.1 

(+2.1) 

80.1 

(+0.9) 

91.5 

(-0.3) 

86.0 

(+1.1) 

75.9 

(+3.4) 
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Naïve Bayes 
78.9 

(+0.3) 

79.2 

(0.0) 

(75.4, 

82.7) 

77.1 

(0.0) 

87.8 

(0.0) 

96.2 

(0.0) 

85.6 

(0.0) 

72.4 

(0.0) 

LDA 
76.1 

(+0.1) 

77.2 

(+0.6) 

(73.3, 

80.8) 

76.7 

(+0.7) 

79.1 

(+0.1) 

92.8 

(-0.3) 

84.0 

(+0.3) 

71.0 

(+1.0) 

QDA 
76.6 

(0.0) 

77.6 

(-0.2) 

(73.7, 

81.2) 

78.3 

(-0.3) 

75.8 

(+0.2) 

90.3 

(+0.3) 

83.8 

(-0.1) 

72.5 

(-0.5) 

SDA 
76.6 

(+0.2) 

77.8 

(-0.6) 

(73.9, 

81.4) 

77.6 

(-0.4) 

78.6 

(-1.1) 

92.2 

(-0.3) 

84.2 

(-0.4) 

72.1 

(-0.7) 

PLS 
75.2 

(0.0) 

78.0 

(0.0) 

(74.1, 

81.6) 

79.7 

(0.0) 

73.9 

(0.0) 

88.4 

(0.0) 

83.8 

(0.0) 

73.9 

(0.0) 

Ridge 
76.7 

(+0.1) 

77.8 

(+1.0) 

(73.9, 

81.4) 

76.9 

(+0.5) 

81.3 

(+3.1) 

93.7 

(+1.2) 

84.5 

(+0.3) 

71.4 

(+0.2) 

Lasso 
76.2 

(+0.1) 

77.2 

(+0.2) 

(73.3, 

80.8) 

76.5 

(0.0) 

79.6 

(+0.7) 

93.1 

(+0.3) 

84.0 

(+0.1) 

70.9 

(0.0) 

Elastic Net 
76.7 

(0.0) 

77.0 

(0.0) 

(73.1, 

80.7) 

74.5 

(0.0) 

90.9 

(0.0) 

97.8 

(0.0) 

84.6 

(0.0) 

68.7 

(0.0) 

GBM 
82.8 

(0.0) 

84.3 

(0.0) 

(80.8, 

87.4) 

82.3 

(0.0) 

90.2 

(0.0) 

96.2 

(0.0) 

88.7 

(0.0) 

79.5 

(0.0) 

XGBoost 
83.0 

(+0.2) 

85.1 

(0.0) 

(81.8, 

88.1) 

82.5 

(0.0) 

93.3 

(0.0) 

97.5 

(0.0) 

89.4 

(0.0) 

79.5 

(0.0) 

SVM 
82.2 

(+0.6) 

84.3 

(+1.2) 

(80.8, 

87.4) 

82.1 

(+1.3) 

90.9 

(+0.5) 

96.6 

(0.0) 

88.8 

(+0.8) 

79.4 

(0.0) 

DT 
82.7 

(0.0) 

84.3 

(0.0) 

(80.8, 

87.4) 

82.3 

(0.0) 

90.2 

(0.0) 

96.2 

(0.0) 

88.7 

(0.0) 

79.5 

(0.0) 

RF 
82.9 

(+0.3) 

84.7 

(+0.4) 

(81.2, 

87.7) 

82.2 

(+0.6) 

92.4 

(-0.6) 

97.2 

(-0.3) 

89.1 

(+0.2) 

79.7 

(+0.7) 

ANN 
80.2 

(-0.4) 

81.3 

(+1.1) 

(76.9, 

84.0) 

81.7 

(+2.8) 

80.0 

(-5.0) 
 

91.2 

(-3.5) 

86.2 

(+0.2) 

76.2 

(+1.7) 

MLP 
81.5 

(+0.7) 

82.7 

(+0.6) 
  

81.6 

(+0.7) 

85.8 

(+0.3) 

94.4 

(0.0) 

87.5 

(+0.4) 

78.0 

(+0.9) 

*95% confidence interval of test data accuracy.  Sensitivity = Recall = TPR. Parenthesis values shows the delta 

from comparing parameter values to the full model. 

 

4.3. Marginal effect of variables 
 
Controlling for all other features, how does one feature, say Age, affect the final predictive 
probability of purchasing travel insurance? To check the consistency of the directional impact 
of the important variables per model, we employed the partial dependent (PD) plot analysis. 
In addition to depicting the marginal effect of the features on the predicted model outcomes, 
the PD plot can detect whether a variable is linearly or non-linearly related to the response 
[43]. The PD plots are exhibited in Appendix H for the XGBoost and Random Forest models. 
As expected, the behavior of each feature to the response variable, Travel Insurance, is non-
linear just like the supervised models which generated these relationships. For both models 
and the others not shown, the probability of purchasing travel insurance increases with age, 
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peaks at age 28, and decreases to age 30 before increasing one year later after which it 
decreases thereafter. The Family Members feature interpretation follows similarly: the more 
members one has in the family up to about 5 members, the more likely one will buy travel 
insurance. The probability decreases thereafter as the number increases and only experiences 
a slight rise as the family count increases to 7 or 8. A disadvantage of using the PD plot analysis 
is that it assumes the features are independent, which is inconsistent with reality.  
 

5. Conclusion 
 
This study explored the application of machine learning algorithms to predict travel insurance 
purchases, offering significant contributions to the insurance and aviation sectors. By 
identifying key predictors such as age, income, travel history, and graduate status, the study 
demonstrated how robust classifiers like XGBoost, random forests, and gradient boosting 
outperform traditional models like logistic regression in predictive accuracy and reliability. 
These findings provide actionable insights for insurers to develop personalized insurance 
policies, enhance customer targeting, and optimize marketing strategies. Moreover, airline 
companies can leverage these insights to design tailored travel insurance advertisements, 
increasing customer conversion rates. Travelers, in turn, benefit from affordable and need-
specific policies, fostering a more inclusive insurance market. 
 
Beyond practical applications, this research underscores the importance of variable selection 
in predictive modeling. By focusing on parsimonious models that prioritize the most relevant 
variables, it reduces overfitting and enhances interpretability, ensuring robust predictions 
across diverse datasets. 
 
While this study provides valuable insights, it acknowledges limitations in data recency and 
scope. The dataset, although sufficient, would benefit from more recent, comprehensive data 
that incorporates additional intuitive variables such as flight costs, insurance premiums, 
domestic versus international travel, and socio-economic factors. Future studies could 
address these gaps by analyzing data spanning pre- and post-COVID-19 periods, enabling 
better comparisons of travel insurance behavior over time. Expanding the scope to include 
insurance for other transportation modes, such as car rentals or cruises, presents another 
promising direction for future research. 
 
This research highlights the transformative potential of machine learning in insurance 
modeling, offering a robust framework for optimizing risk assessment and operational 
efficiency. By bridging gaps in existing literature, it paves the way for more inclusive, data-
driven approaches in the travel insurance industry. 
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Figure A: Plots of the distribution of other data variables. 

 
Table B1: Performance results of predictive models of full model. 
 

Model 
Accuracy  95% 

CI* 

Sensitivity Specificity Precision Recall F AUC 

% % % % % % % 

  Train Test Balanced Test Test Test Test Test Test Test 

Logistic 76.4 78.0 78.3 
(74.1, 

81.6) 
77.8 78.8 92.2 77.8 84.4 72.1 

k-NN 78.6 79.0 79.1 
(75.2, 

82.5) 
79.0 79.2 91.8 79.0 84.9 72.5 

Naïve 

Bayes 
78.6 79.2 82.5 

(75.4, 

82.7) 
77.1 87.8 96.2 77.1 85.6 72.4 

LDA 76.0 76.6 76.6 
(72.6, 

80.3) 
76.0 79.0 93.1 76.0 83.7 70.0 

QDA 76.6 77.8 77.1 
(73.9, 

81.4) 
78.6 75.6 90.0 78.6 83.9 73.0 

PDA 76.0 76.6 77.5 
(72.6, 

80.3) 
76.0 79.0 93.1 76.0 83.7 70.0 

SDA 76.4 78.4 78.9 
(74.5, 

82.0) 
78.0 79.7 92.5 78.0 84.6 72.8 

PLS 75.2 78.0 76.8 
(74.1, 

81.6) 
79.7 73.9 88.4 79.7 83.8 73.9 

Bayes 

GLM 
76.4 78.0 78.3 

(74.1, 

81.6) 
77.8 78.8 92.2 77.8 84.4 72.4 

Ridge 76.6 76.8 77.3 
(72.9, 

80.5) 
76.4 78.2 92.5 76.4 83.7 70.5 

Lasso 76.1 77.0 77.7 
(73.1, 

80.7) 
76.5 78.9 92.8 76.5 83.9 70.7 

Elastic 

Net 
76.7 77.0 82.7 

(73.1, 

80,7) 
74.5 90.9 97.8 74.5 84.6 68.7 
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GBM 82.7 84.3 86.3 
(80.8, 

87.4) 
82.3 90.2 96.2 82.3 88.7 79.5 

XGBoost 82.8 85.1 87.9 
(81.6, 

88.1) 
82.5 93.3 97.5 82.5 89.4 79.5 

SVM 81.6 83.1 85.6 
(79.5, 

86.3) 
80.8 90.4 96.6 80.8 88.0 79.4 

DT 82.7 84.3 86.3 
(80.8, 

87.4) 
82.3 90.2 96.2 82.3 88.7 79.5 

RF 82.6 84.3 87.3 
(80.8, 

87.4) 
81.6 93.0 97.5 81.6 88.9 79.0 

ANN 80.6 83.5 84.6 
(79.9, 

86.6) 
82.3 86.8 94.7 82.3 88.0 74.5 

MLP 80.8 82.1 81.4   80.9 85.5 94.4 80.9 87.1 77.1 

*95% confidence interval of test data accuracy. Sensitivity = Recall = TPR. No values for blacked-out 
square. 

 

 
Table B2: Confusion matrix output and tuned parameters of full model. 
 

Model 
True 

+ 

False 

+ 

False 

– 

True 

–  

Test 

total 
Hyper- parameters tuned 

Logistic 294 25 84 93 496   

k-NN 293 26 78 99 496 k=18 

Naïve 

Bayes 
307 12 91 86 496 Laplace = 0.5, usekernel = TRUE, adjust = 0.5 

LDA 297 22 94 83 496   

QDA 287 32 78 99 496   

PDA 297 22 94 83 496 Λ = 0 

SDA 295 24 83 94 496 Λ = 0.5 

PLS 282 37 72 105 496 ncomp=2 

Bayes 

GLM 
294 25 84 93 496   

Ridge 295 24 91 86 496 Α = 0, λ = 0.02782559 

Lasso 296 23 91 86 496 Α = 1, λ = 0.01 

Elastic Net 312 7 107 70 496 Α = 0.1668101, λ = 0.3764936 

GBM 307 12 66 111 496 
n.trees=50, interaction.depth=3, shrinkage=3, 

eta=0.3, n.minobs=10 

XGBoost 311 8 66 111 496 
Gamma=0, nrounds=100, max_depth=2, eta=0.3, 

colsample_bytree=0.6 

SVM 308 11 73 104 496 
kernel=polynomial, degree=3, scale=0.1, 694 

support vectors, cost=2 

DT 307 12 66 111 496   

RF 311 8 70 107 496 ntree=200, mtry = 2 

ANN 302 17 65 112 496 size=2, decay=0.29 
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MLP 301 18 71 106 496 layer1 = 10 layer2 =10, layer3 = 10 

Positive Class is “No” 

 
Table B3: Performance results of predictive models of reduced model. 
 

Model 
Accuracy  95% 

CI* 

Sensitivity Specificity Precision Recall F AUC 

% % % % % % % 

  Train Test Balanced Test Test Test Test Test Test Test 

Logistic 76.4 77.8 78.1 
(73.9, 
81.4) 

77.6 78.6 92.2 77.6 84.2 72.1 

k-NN 80.5 80.8 80.6 
(77.1, 
84.2) 

81.1 80.1 91.5 81.1 86 75.9 

Naïve 
Bayes 

78.9 79.2 82.4 
(75.4, 
82.7) 

77.1 87.8 96.2 77.1 85.6 72.4 

LDA 76.1 77.2 77.9 
(73.3, 
80.8) 

76.7 79.1 92.8 76.7 84 71.0 

QDA 76.6 77.6 77.0 
(73.7, 
81.2) 

78.3 75.8 90.3 78.3 83.8 72.5 

PDA 76.1 77.2 77.9 
(73.3, 
80.8) 

76.7 79.1 92.8 76.7 84 71.0 

SDA 76.6 77.8 78.1 
(73.9, 
81.4) 

77.6 78.6 92.2 77.6 84.2 72.1 

PLS 75.2 78.0 76.8 
(74.1, 
81.6) 

79.7 73.9 88.4 79.7 83.8 73.9 

Bayes 
GLM 

76.4 77.8 78.1 
(73.9, 
81.4) 

77.6 78.6 92.2 77.6 84.2 72.1 

Ridge 76.7 77.8 79.1 
(73.9, 
81.4) 

76.9 81.3 93.7 76.9 84.5 71.4 

Lasso 76.2 77.2 78.1 
(73.3, 
80.8) 

76.5 79.6 93.1 76.5 84.0 70.9 

Elastic 
Net 

76.7 77.0 82.7 
(73.1, 
80.7) 

74.5 90.9 97.8 74.5 84.6 68.7 

GBM 82.8 84.3 86.3 
(80.8, 
87.4) 

82.3 90.2 96.2 82.3 88.7 79.5 

XGBoost 83.0 85.1 87.9 
(81.8, 
88.1) 

82.5 93.3 97.5 82.5 89.4 79.5 

SVM 82.2 84.3 86.5 
(80.8, 
87.4) 

82.1 90.9 96.6 90.9 88.8 79.4 

DT 82.7 84.3 86.3 
(80.8, 
87.4) 

82.3 90.2 96.2 82.3 88.7 79.5 

RF 82.9 84.7 87.3 
(81.2, 
87.7) 

82.2 92.4 97.2 82.2 89.1 79.7 

ANN 80.2 81.3 80.9 
(77.5, 
84.6) 

81.7 80.0 91.2 81.7 86.2 76.2 

MLP 81.5 82.7 82.0   81.6 85.8 94.4 81.6 87.5 78.0 

*95% confidence interval of test data accuracy. Sensitivity = Recall = TPR. No values for blacked-out square. 

 
Table B4: Confusion matrix output and tuned parameters of reduced model. 
 

Model 
True 

+ 
False 

+ 
False 
– 

True 
–  

Test 
Total 

Optimal model parameters tuned 

Logistic 294 25 85 92 496   

k-NN 292 27 68 109 496 k=16 

Naïve 
Bayes 

307 12 91 86 496 Laplace = 0.5, usekernel = TRUE, adjust = 0.5 

LDA 296 23 90 87 496   

QDA 288 31 80 97 496   
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PDA 296 23 90 87 496 Λ = 0 

SDA 294 25 85 92 496 Λ = 0.5 

PLS 282 37 72 105 496 ncomp=2 

Bayes 
GLM 

294 25 85 92 496   

Ridge 299 20 90 87 496 Α = 0, λ = 0.08497534 

Lasso 297 22 91 86 496 Α = 1, λ = 0.01 

Elastic 
Net 

312 7 107 70 496 Α = 0.1668101, λ = 0.3764936 

GBM 307 12 66 111 496 
n.trees=25, interaction.depth=4, shrinkage=0.15, 
eta=0.3, n.minobs=10 

XGBoost 311 8 66 111 496 
gamma=0, nrounds=50, max_depth=2, eta=0.3, 
colsample_bytree=0.8 

SVM 308 11 67 110 496 
kernel=polynomial, degree=3, scale=1, 82 
support vectors, cost=0.25 

DT 307 12 66 111 496   

RF 310 9 67 110 496 ntree=500,mtry = 2 

ANN 291 28  65   112  496 size=5, decay=0.05 

MLP 301 18 68 109 496 layer1 = 10 layer2 =10, layer3 = 10 

Positive Class is “No” 

 

Table B5: Delta of model results. 
 

Model 
Accuracy  Sensitivity Specificity Precision Recall F AUC 

Delta Delta Delta Delta Delta Delta Delta 

  Train Test Balanced Test Test Test Test Test Test 

Logistic 0.0 -0.2 -0.2 -0.2 -0.2 0.0 -0.2 -0.2 0.0 

k-NN 1.9 1.8 1.5 2.1 0.9 -0.3 2.1 1.1 3.4 

Naïve Bayes 0.3 0.0 -0.1 0.0 0.0 0.0 0.0 0.0 0.0 

LDA 0.1 0.6 1.3 0.7 0.1 -0.3 0.7 0.3 1.0 

QDA 0.0 -0.2 -0.1 -0.3 0.2 0.3 -0.3 -0.1 -0.5 

PDA 0.1 0.6 0.4 0.7 0.1 -0.3 0.7 0.3 1.0 

SDA 0.2 -0.6 -0.8 -0.4 -1.1 -0.3 -0.4 -0.4 -0.7 

PLS 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 

Bayes GLM 0.0 -0.2 -0.2 -0.2 -0.2 0.0 -0.2 -0.2 -0.3 

Ridge 0.1 1.0 1.8 0.5 3.1 1.2 0.5 0.3 0.9 

Lasso 0.1 0.2 0.4 0.0 0.7 0.3 0.0 0.1 0.2 

Elastic Net 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 

GBM 0.1 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 

XGBoost 0.2 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 

SVM 0.6 1.2 2.9 1.3 0.5 0.0 1.3 0.8 0.0 

DT 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 

RF 0.3 0.4 0.0 0.6 -0.6 -0.3 0.6 0.2 0.7 

ANN -0.4 1.1 -3.7 2.8 -5.0 -3.5 2.8 0.2 1.7 

MLP 0.7 0.6 0.0 0.7 0.3 0.0 0.7 0.4 0.9 
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Figure C1: Tuning for SVM model: Full Model uses C=62, degree=3, scale=0.1, 694 support vectors. 

 

  
 

Figure. C2: Graphical representation of the neural network. 
 
Full Model       Reduced Model 
 
Ridge: Optimized λ is 0.0278             Optimized λ is 0.0850 

 
 
Lasso: Optimized λ is 0.01         Optimized λ is 0.01  
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Elastic Net: λ is 0.3765 and α is 0.1668    λ is 0.3765 and α is 0.1668  

 
 

Figure. D2: Coefficients of regularization models. 
 

 
 
Figure E: Box and whisker plot of train accuracy & ROC curves. 
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All three methods (forward stepwise, backward stepwise and best subset selection) choose all 
the variables to enter the model at exactly the same time. Variable “Ever Traveled Abroad” is 
seen as the most important contributory variable and so chosen first, followed by “Annual 
Income” and then “Family Members” followed by “Age”. Variables “Frequent Flyer” and 
“Graduate Or Not” are the 5th and 6th chosen to enter the model. “Chronic Disease” and 
“Employment Type” are the final two (7th and 8th respectively) variables chosen to enter the 
model. This implies that these variables contribute less information to our model than the 
others. Using the adjusted R-squared criteria, all three algorithms conclusively chose only the 
first 6 variables to be used for the model. This means we can do without the variables “Chronic 
Disease” and “Employment Type” and the model will be very well explained by the 
remaining variables. We used these six remaining variables in our reduced model to confirm 
this. Note that, variable importance plots on the full model of some of the machine learners 
also confirm this. 
 

 

 

 
 
Figure F: Subset selection algorithm results. 
 
Note: The higher the number of “stars” below a specific variable, the higher the importance 
to the model. For all three procedures, the best one-variable model is the model that contains 
only the Ever Traveled Abroad variable and the intercept. The best two-variable model 
includes Annual Income to the one-variable model, in that order based on the total number of 
stars a variable.  
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Full Model     Reduced Model 
 

Number of Predictors selected   Number of Predictors selected 
 

 
       
Variable Importance Plot for Full Model      Variable Importance Plot for Reduced 
Model 

 
 
Figure G. Random forest variable importance plots & predictor select. 
 
 

XGBoost    Random Forest 
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Ever Traveled Abroad 

 
Figure H. Partial dependence plots. 
 

Definitions 
 
Acronym Meaning 

 
Acronym Meaning 

AIC Akaike Information Criteria 
 

NB Naïve Bayes 

ANN Artificial Neural Network 
 

NIR No Information rate 

AUC Area under the Curve 
 

NN Neural Network 

CART Classification and Regression Trees 

 

PDA 
Penalized Discriminant 

Analysis 

CNN Convoluted Neural Network 
 

PLS Partial Least Squares 

CV Cross Validation 

 

PS/SE 
Private Sector / Self-

Employed 
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DA Discriminant Analysis 

 

QDA 
Quadratic Discriminant 

Analysis 

FN False Negative 
 

RF Random Forest 

FP False Positive 

 

RNN 
Recurrent Neural 

Network 

FPR False Positive Rate 

 

ROC 
Receiver Operating 

Characteristic 

GLM Generalized Linear Model 

 

SDA 
Shrinkage Discriminant 

Analysis 

GS Government Sector 
 

SVM Support Vector Machines 

KNN k-Nearest Neighbors 
 

TN True Negative 

LASSO 
Least Absolute Shrinkage and 

Selection Operator 
 

TP True Positive 

LDA Linear Discriminant Analysis 
 

TPR True Positive Rate 

MLP Multi-layer Perceptron 

 

XGBoost 
eXtreme Gradient 

Boosting 

PD Plot Partial Dependence Plot    

 


