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Abstract

This work presents the estimation of parameters and uncertainty of straight regression line
using the least square method when both coordinates in Cartesian System XOY are affected by
errors  and  fully  correlated.  The  maximalization  of  the  likelihood  multivariate  Gaussian
function as equivalent of minimalization of objection function is derived for common vector
variable Z included X and Y vectors random variable vectors of coordinates of measurement
points.  In  this  way  all  kind  of  possible  correlations  are  taken  into  account  within  the
metrological  literature,  there  exist  some  works  taking  them  into  account.  The  core  of  the
presentation is the mathematical manipulation based on linear algebra matrixes and vectors
with  elements  of  functional  analysis.  Any  novelty  claimed  in  this  field  will  be  carefully
demonstrated.  The problem is  reduced to  the  determination of  numerical  one-dimensional
characteristic  e.g.  objection function  as  function of  slope  a of  straight  regression  line.  The
algorithm allows to determine numerically the covariance matrix Uab and the coverage corridor
for straight line regression. The implementation of the numerical method is applied in scripts
Plot_G.txt and U_ab.txt running in MATLAB environment. Finally, the comparison of results
based on the previous published tests are carried out.
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1. Introduction

Methods of  using  least  square  fit  for  linear  regression are  well-known and have been widely
applied since the works of C.F. Gauss and A.M Legendre dating to the eighteenth century. These
methods  are  used  in  many  engineering  disciplines  including:  econometrics,  social  science,
astronomy, geodetics, chemistry, climate science, biology but most important, in metrology. Least
square method can be found as first publication by Pearson in 1901, also by Deming (1943), York
(1966)  with exact analytic solutions [1],  of Golub and van Loan in which they introduced the
errors-in-variables (EIV) models [2], Lybanon 1984 with method of effective variances and exact
solutions for heteroscedasticity case [3], (Neri 1989) with special and proposed data for simulations
[4],  Krystek (2011) and Anthon [5] with special algorithm with correlation  x  and  y coordinates
with exact solutions of specific case using parametrization algorithm, publication by A.R. Amiri-
Simkooei  and Jazaeri  using algorithm based on the  Lagrange multipliers  (2014)  [6,7]  and also
many others [8-23]. 

Within the past  few decades we had a lot  of  publications in the highest  journals  in the USA,
Canada, Chine, Europe in this area of least square methods. It is not possible to give a complete list
of them in literature references,  but they can be partially found in the works published in the
references section. 

The  numerical  algorithm  for  WTLS (Weighted  Total  Least  Square)   method is  very  useful  in
metrology and that is why all known algorithm have been already implemented in a series of
software  developed  by  several  NMIs:  for  example  from  NIST  USA,  NPL  Great  Britain,  PTB
Germany PTB , INRIM Italy and many others [18]. 

The proposed method is under development and maximum achieved accuracy on Person data
with York weights is almost eight digits after point.  It is to early to make a comparison with other
implementation with advanced and sophisticated algorithm. In general three testing cases from
article of A.R. Amiri-Simkooei and Jazaeri using algorithm based on the Lagrange multipliers are
used in order to compare accuracy of calculations [6,7], but some cases with analytical solution of
the problem also are demonstrated.

The  proposed method is  addressed to  any carried  out  experiment  when two data  set  of  two
coordinates x and y with covariances matrix are experimentally determined, e.g. measured. Based
on the above data putting in EXCEL, the method implemented in MATLAB scripts Plot_G.txt and
U_ab.txt  is  very fast  and with high accuracy numerically  determines the characteristics  of  the
objective function in the parameter of straight regression line:  a-slope and also b-intercept within
the desired range of its  variability. In this way, it  allows you in relatively short time to assess
whether there is a minimum of objective function and the least square method has the possibility
to apply. The proposed method resolves problem of  generalized of least square method e.g. WTLS
so in the specific cases of covariances matrixes for Weighted Least Square (WLS) and Ordinary
Least Square (OLS) method are also solved to. The overall breakdown is WTLS followed by WTS
and OLS.  From the  linear  algebra  point  of  view this  will  reflect  when the  covariance  matrix
includes:  non-diagonal elements, exactly diagonal elements or it is a identity matrix multiplied by
a constant variance, respectively. 
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Since 1993 we used in our metrological works Guide for Expression of Uncertainty (GUM) and
also  supplements:  one  for  propagation  of  distribution-Monte  Carlo  Methods,  and  also  with
supplement 2 describing methods estimating uncertainty on multivariate variables. So we will use
the  concept  of  defined  uncertainty  according  to  the  GUM.  JCGM100:2008,  Evaluation  of
measurement data -  Guide to the  expression of  uncertainty in measurement.  +  Supplement  2.
Extension to any number of output quantities. JCGM102:2011.

The works include: estimating parameters of straight regression line, assumption for straight line
regression,  derivation of effective inverse covariance matrix, analyzing two extreme cases with
domination of covariances matrixes U X or UY  with analytical solutions, consequences of the new
approach and finally the new algorithm, some testing cases, summary and conclusions.

Most of parts of this work was presented during Joint Virtual Workshop of ENBIS and MATHMET
Mathematical and Statistical Methods for Metrology MSMM 2021 in Turyn in Italy, (ID 78) which
took place at 31 May-1 June 2021 the presentation was titled Generalization of least square method
for straight line regression-A new approach [24].

2. Estimating Parameters of Straight Regression Line 

In the figure 1 we have marked the measuring points M i with coordinates xi , yi i=1,...,n, and plotted
the straight regression line and the coverage corridor in cartesian system Y0X. If assume there is a
regression of  y  on  x  with only coordinates y affected by errors, this corridor looks similar even
when the second coordinates x is also affected by errors or any possible coordinates are correlated.

Figure 1: Solution  for straight line regression y on x problem in Cartesian XOY system. The coverage
corridor between two hyperboles determining the standard/expanded  uncertainties for y output quantity  for
every values of independent variables x.

From metrological point of view we should determine standard/extended  uncertainty at selected
points for example: x1 and x2 From GUM it means  the  standard deviation of  distribution of sum
of two correlated distributions: for slope  of  straight line regression a·x  (x – is treated  as factor)
and for intercept of straight line regression b. When the uncertainties of the variable  y are much
smaller than uncertainties of variable of x or close to zero, the uncertainty relating to variable x is
transferred to the coverage  corridor for the variable y in this accepted system. Therefore, the above
model  can be used for both variables that are error-affected and correlated in any way. Variance -
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the square of standard uncertainty is the variance of the sum of the two correlated mentioned
distributions  ax and  b where  the  mean  values  a and  b determine  for  slope  and  intercept,
respectively. On the other hand, the interval limits by expanded uncertainty for the two selected
points  x1 and x2  coordinates require a  extension factor/coefficient to be set, which in this case is
equal  to  the  inverse  of  cumulative  distribution  function  for  student  distribution  for  95  %  of
probability and n-2 degree of freedom.

This form of variance is  equivalent to a linear or quasi-linear sum of two weighted correlated
random  variables  (1−k ) y1+k y2 ,which  it  was  presented  at  MATHMET  conference  in  2019  in
Lisbon- see bottom of figure 1 [25].

So, the finding of straight regression line coverage corridor is very important as well as finding
uncertainties for slope  Ua and for intercept Ub and correlation coefficients ρab  e.g. elements of
covariance  matrix  U ab.  It  is  similar  to  the  determining mean value  and standard or  expanded
uncertainty. In contrary to very precision numerical method of propagation of distribution e.g. the
Monte-Carlo method [26] to find the coverage corridor w applied the propagation of  uncertainties
in the form of a matrix equation using the linear model where all output quantities are sums of
input quantities  with corresponding sensitivity coefficients. Because the elements of covariance
matrix U ab are necessary for the determination of confidence curves describing by two hyperboles
the method of linearizing of the model for performance multivariate  function is used.  In such
model  with  multivariate  random  variables  the  uncertainty  of  one  variable  is  extended to  the
covariance matrix. The covariance matrix propagation equation means that the transformations of
the covariance matrix of input U in  to the output covariance matrix are U out carried out using of a
sensitivity  matrix  C-Jacobian  matrix  whose  elements  are  the  first  partial  derivatives  of  the
transform function Uout =  CUinCT [1]. This is the most general expression for the propagation of
variances from one set of variables onto another. The estimation of expanded uncertainty at the
output of the system requires to determine the area of the confidence region (coverage region)
with a given probability so the  extended coefficient (coverage factor)  k 0,95 is required. Thus, in
order to determine the coverage corridor and thus to determine the expanded uncertainty for these
two points, it is necessary to know not only the parameters a and b of straight line regression, but
also  the  Uab covariance  matrix.  The  matrix  law of  the  propagation  of  uncertainty  results  in  a
correlation coefficient between the coordinates y1 and y 2 are given:

                                     U y12
=[∂ y1

∂a

∂ y1

∂b
∂ y2

∂a
∂ y2

∂b
]U ab[∂ y 1

∂a

∂ y2

∂a
∂ y 1

∂b
∂ y2

∂b
] =  [x1 1

x2 1]Uab[x1 x2

1 1 ] (1)

Where covariances matrixes are defined as:

                                    U ab=[ ua
2 ρabuaub

ρabuaub ub
2 ] ,  U y12

=[ uy1

2 ρ y12u y1
u y2

ρ y12u y1
u y2

u y2

2 ] (1 a,b)

After simply matrix multiplication we have  (i=1,2)
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                                  u y i

2 =xi
2ua

2+2 x i ρabuaub+ub
2 ,   ρ y1,2=

ua
2 x1 x2+ρab uaub(x1+x2)+ub

2

u y1
u y2

   (2 a,b)

3. Assumption for Straight Line Regression

As a result of repeated measurement at each measuring points of the values of both coordinates,
we  can  determine  the  mean  value,  uncertainty  for  each  coordinates,  and  also  determine  the
experimental correlation coefficients of each pairs of the M i and M jconsidered measuring points.It
can be taken into account autocorrelation for a random variable, x i  and x j, and  y iand ,y j as well as
cross-correlation for xi and y j, x j and yi , xi and yi , x j and y j coordinates see figure 2.

 

Figure 2: Any possible correlations between measurement data of  chosen pairs measurements points M i and
M j.

By adopting Gaussian distributions as input at any measurements points,  we get joint density
distributions inside the coverage corridor at the corresponding Pi and P j points lying on a straight
regression  line  to  which  errors  are  determined  from  the  measuring  points.  The  resulting
distributions at  Pi and  P j points along the y define the individual confidence intervals-see figure 3
Our task is from input quantities obtain output quantities a, b and  the covariance matrix U ab.

Figure 3: Joint probability multivariate distribution f(x, y) according with (5) along straight line regression
and two probability one dimensional  distribution at  the two projecting points  Pi and  P j laying on the
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straight  line  regression  corresponding  to  the  two  measurement  points  M i and  M j with  probability
distribution along x and y. The projecting points distributions are always a sum of two random correlated
variables  a  multiplicated  by factor  x   with standard  uncertainty  xua  and variables  b   with standard
uncertainty  ub.The variance ( square of standard uncertainty) is as  given at the bottom of figure.

Now,  from  two  n–dimensional  vectors  random  variables:  X=[X1 ,…, X n]
T ,

Y=[Y 1 ,… ,Y n]
T , we create mean vector of new common vector random variable  2 x n- dimensional

– multivariate variable Z to take into account any cross correlation between both coordinates,   

                                     Z=[XT ,Y T ]T=[X1 ,…, X n ,Y 1 ,…,Y n]
T=[Z 1 ,…, Z2 n]

T (3)

Where mean vector is
                                 
                                       ZP=[X P1 ,…, XPn ,Y P1 ,…,Y Pn ]

T=[ZP1 ,…, ZP2n ]
T ,   (3 a,b)

where  and  zi
k=x i

k,  i=1,…,n,  z j
k= y j

k , j=n+1 ,…,2n , k=1 ,…,m .  In our derivations we applied very
useful vector equation of straight line regression in vector representation which  can be expressed
as:

                                       [Y P1

…
Y Pn

]=a[X P1

…
XPn

]+b[ 1
…
1 ] < = >  yP=aXP+b , b=b[ 1

…
1 ] (4)

We put vector random variable to the likelihood for a Gaussian joint density multivariate function
and from maximizing likelihood obtain  minimizing  condition for objective function. The common
covariance matrix UZ  is a typical covariance matrix size of  2n x 2n for Z-random vector variable
size of  2n. The likelihood for a Gaussian joint density multivariate function is expressed as

                                        L((ΔZ)=f (ΔZ)= 1

(2 π )n√det (U Z )
exp(−1

2
ΔZTU Z

−1 ΔZ) (5)

                                                       
Where the vector of errors is defined as: ΔZ=Z−Z p=[ ΔXT , ΔYT ]T , and covariance matrix UZ can
be described as 

                                    UZ=[ u2 (Z1) ⋯ ρn1u (Z 1)u (Z2n)
⋮ ⋱ ⋮

ρ1nu(Z1 )u (Z2n) ⋯ u2 (Z2n) ]                                                          (6)

and determinant of UZ must be greater than zero:det (U Z)> 0.  In (6) the standard deviation σ (Zi) are
replaced  by uncertainties u(Zi) and correlation coefficients ρij are estimated by experimental 
correlation coefficients r ij
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                                         r ij=
∑
k=1

m

(z ik−Z i)(z jk−Z j)

√∑
k=1

m

(zik−Zi)
2 √∑

k=1

m

(z jk−Z j)
2

   and  i , j=1 , ... ,2 n. (7)

The maximum likelihood means the minimum of the objective function:

                                         L(ΔZ)→max⇔G(ΔZ)=ΔZTUZ
−1 ΔZ→min (8)

Hence, the two equations of system  are obtained:

                                          {G(ΔZ)=ΔZTU Z
−1 ΔZ→min

 Y p=aX p+b  
                                       (9 a,b)

where the covariance  and inverse of  the covariance matrixes can be partitioned to the parts of  
size  n x n:

U Z=[ U X U XY

U XY
T U Y

],                   U Z
−1=[V 11 V 3

V3
T V 22

]                                      (10 a,b)

So, the units of UZ matrix are not uniform in general because U X,U XY (U XY
T ),UY  size of  n x n have

different units: square of unit x, product of units x y and square of unit y, respectively. The matrix
U XY is not a covariance matrix because it does not have a diagonal with square of uncertainties.
The matrix  U XY should be called as covariance parts where all elements have the same form . In
ρ iju (X i)u (Y j)i , j=1 ,…,n general,  ρ iju (X i)u (Y j)≠ ρ jiu (X j)u (Y i) and the matrix U XY do not need to be
symmetrical  U XY

T ≠U XY  at all,  although both U XY
T  and U XY have the same diagonal elements. Also,

both vectors  z  and  z p, have two units: part of  X has unit of  x and part of  Y has a unit of  y.
Analogically the four parts of  UZ

−1 have a different units. The matrixes V11,V3(VT
3),V22, have inverse

of square of unit x, inverse of  product of units x y and inverse of square of unit y, respectively.

4. Derivation of Effective Inverse Covariance Matrix

This is mathematical description of our task and as we see the symmetric matrix  U z has to be
partitioned with different units as well as inverse matrix has to be partitioned to four  element with
different units. The objective function can be described as:

    G (ΔZ , a , b)=G (ΔX ,ΔY , a , b)  = [ΔXT , ΔYT ]UZ
−1[ ΔXΔY ] = [ΔXT , ΔY T ][V11 V 3

V 3
T V 22][ ΔXΔY ] =       

                                                               =  ΔXTV 11 Δ X+ΔXTV 3 ΔY+ΔYTV 3
T Δ X+ΔYTV 22ΔY  =

                                                                =  Δ XTV 11 ΔX+2Δ XTV 3 ΔY+ΔYTV 22ΔY                          (11)

This leads to the objective function which consists of three elements:

1 First  autocorrelation x - domination of UX  matrix with the ability to solve problems by 
subjugating mathematical formulas for regression x on y :
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ΔXTV 11 ΔX≫2 ΔXTV 3 ΔY+ΔYTV 22ΔY   then     U z
−1=V 11≈U X

−1 ; 

2 The middle cross correlation between x and y  - the second  element is corresponding
for cross correlation and occurs only when both  above elements are considered non-
zero V 3≠0 , and therefore requires  invertible of UZ  matrix. If the middle element is
zero, the invertible matrix U z

−1 is composed by independently invertible two matrixes
the  U X

−1and UY
−1.

3 Third autocorrelation y - responsible for the dominance of the  UY  matrix – regression y
on x with autocorrelation y :

                     ΔYTV 22ΔY≫2 ΔXTV 3 ΔY +ΔXTV 11ΔX  then  U z
−1=V 22≈UY

−1

From vector equation of straight line regression for projecting points we obtain:

                                          Y p=a X p+b  => Y p−Y +Y=a X p−a X+a X+b (12)

Defining the new vector E=Y−aX−b , the error vector ΔY  can be expressed as:

                                          ΔY=a ΔX+E                                                                                                   (13)

Substitution of the error vector ΔY   leads to expression  for objective function as follows 

                                           G (ΔX , a , b)=ΔXTV 11ΔX+ΔXTV 33ΔY +ΔYTV22 ΔY=

             = ΔXTV11ΔX+ΔXTV 3 [aΔ X+E ]+ [aΔX+E ]TV 3
T ΔX+[aΔ X+E]TV 22 [aΔX+E]=

=ΔXTV11 Δ X+a ΔXTV 33 ΔX+2ETV 3
T ΔX+a2 ΔXTV 22Δ X+2a ETV22 ΔX+ETV22 E    (14)

Where V 33=V 3+V 3
T is a symmetric matix.

The final expression for objective function is:

                                          G (ΔX , a , b)=ΔXTV ΔX+2ET (V 3
T+aV 22) ΔX+ETV 22E                          (15)

where V= V (a)=V 11+aV 33+a
2V 22, V - symmetric matrix, has a real eigenvalues λVi with normalized 

orthogonal eigenvectors Ri,i=1,...,n and 

                                        VRi = λViRi,        RiR j={0  i≠ j
1  i= j

                                                                     (16)

This expression (15) will be minimized analytically by looking for a local minimum for error vector
ΔX- we have hyper parabolic/quadratic dependence, and next minimizing for local minimum for
variable b to finally expressed the function G(a) as one dimensional dependence on a. If matrix V is
diagonal  like  for  noncorrelated  case  it  is  possible  to  express  (15)   as  sum of  quadratic  form.
Orthogonal matrix HT=H−1 is composed of normalized eigenvectors  H=[R1 ,… , Rn]and H−1H  =
H H−1= I  and also matrix V can be diagonalized in the following way:
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                                           H−1VH=[ λV 1 0 0
0 … 0
0 0 λVn]                                                         (17)

The same possibility of expression of objection function as sum of quadratic form we obtain if we
apply  a  mathematic  trick  to  insert  two  times  an  identity  matrix  to  diagonalize  matrix  V.
Consequently, it is always possible to present this expression: 

               G (ΔX , a , b)=(HT ΔX )TH−1VH (HT ΔX )+2(HT ΔX )T H−1 (V 3+aV22)E+ETV22E       (18)

in the form of sums of quadratic forms:

                                           G (ΔX , a , b)=∑
i=1

n

h x i
2 λVi+2h x ihVEi+E

TV 22E                                             (19)

where  ΔX  is  linearly  transformed (by translation,  rotation)  to  the  new  n-dimensional  vector
hx=HT ΔX .  and hVEi  are elements of H−1(V 3+aV 22)E vector.  The minimum of G in the case of
all eigenvalues λVi> 0,  i=1,..,n, is reached  when all quadratic forms have minimum and therefore
matrix V must be positive definite. If all the eigenvalues of matrix V are positive, i.e. the V matrix is
positive  define,  then  objective  function  takes  the  minimum  value  when for  each  square  form
reaches  the  minimum.  It  occurs  for  the  vertex  of  hyper  parabola  of  (19)  -  we  have  a  special
expressions for parabola,  that is, we can differentiate function G  due to the  error vector X−X p

and therefore due to the  vector-   that is, choose such a set of points  X p  on a regression that
minimizes locally objective function. Automatically we obtain expression  of error vector for  ΔX
and for ΔY  on above minimizing condition. There is no need to parameterize and search the vector
X p set to minimize the objective function.

The condition for minimum  of  G (ΔX , a ,b ) due to ΔX (X- constant vector of coordinates x)

                                          
∂G (ΔX ,a ,b )

∂ ΔX
=
∂G (X−X p ,a ,b)

∂(X−X p)
=
∂G (−X p ,a ,b )

∂(−X p)
=0                               (20)

Hence, ΔXvertex
T =−ET (V 3

T+aV 22)V
−1 because for quadratic dependence:  g ( x )=a1 x

2+ b1x+c1 and a1>0

we  have  the  minimum  at  xvertex=
−b1

2a1

.  And  also  from ΔY=aΔX+E,  and  then

ΔY vertex
T =ET (V 11+aV 3)V

−1.  The value of minimum of quadratic form  G (ΔX , a ,b ) from (15), it is at
vertex of hyper parabola:
                       
                                         G (ΔXvertex ,a ,b ) = G(a,b) = ET (V 3

T+aV 22)ΔX vertex+E
TV22 E                (21)

After simplifying we obtain: 

                                         G (Δ X ,a ,b)≥G(a,b)=ET [V 22−(V 3
T+aV 22)V

−1(V 3+aV22)]E                     (22)
The minimum of objective function is given at vertex of hyper parabola for local minimum for
error vector of  ΔX . In this way the objective function can be expressed as for regression  y  on  x
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when we introduce the effective inverse of covariance matrix, which is dependent on slope  a as
well as matrix V.
                                         G(a,b)=[Y−a X−b ]TUYeff

−1 [Y−a X−b ]                                                            (23)
where effective inverse of covariance matrix is given by
                          
                                          UYeff

−1  =  V 22−(V 3
T+aV22)V

−1 (V 3+aV 22)                                                        (24)

where the matrix  V = V (a)=V 11+aV33+a
2V 22  and it  is dependent on a.

 When the matrix V3   is symmetric e.g. V3=V3
T  then the expression for effective inverse matrix 

reduces to the form:

                                        u yeff
−1 =(V11V22−V 3V 3)V

−1=(V 11V 22−0,25V 33V 33)V
−1                       (24a)

5. Domination of Matrix Uy - Regression y on x With Autocorrelation

At this moment we consider,  in simply linear algebra way, the regression  y on  x when matrix
U X is zero and  all errors are calculate along variable y. The OY direction of measurement error is
accepted.  Here,  uY i≠0  and  uXi=0  and  X p=X ,  ΔX=0,  ΔY=Y−Y p=Y−a X p−b=Y−a X−b.  The
covariance matrix have these parts:  UZ=UY ,U Z

−1=UY
−1 ,U XY=UX=0.

The objective function  becomes:

                                          G (a ,b)=ΔY TUY
−1 ΔY=[Y−aX−b ]TU Y

−1[Y−a X−b]                             (25)

Introducing  the  new  universal  notation  of  parameters  for  universal  notation  of  inverse  of
covariance matrix  U−1=UY

−1 in the following manner and use distributive property which holds
with respect to multiplication over addition we introduce the new scalar parameters: 

                                                                 S=1TU−11=∑
i=1

n

∑
j=1

n

[u−1]ij ,

                                        S x=XTU−11=1TU−1X ,       S y=YTU−11=1TU−1Y
                    
                                   S xx=XTU−1X , S xy=XTU−1Y=Y TU−1X ,    S yy=Y TU−1Y             (26 a-f)

and  [u−1 ]ij-  is  the  ij-  element of inverse  covariance  matrix  U−1.  The calculations  (25)  would be
started  by  finding very  well  known the  following  sums which  be  replaced by  multiplication
transposition vector by inverse of covariance matrix and by vector - this is very important issue.
The constant of matrix U =  UY  gives possibility to minimize the objective function analytically
because of
                                          G(a,b)=a2S xx+2ab S x−2 a Sxy+b

2S−2b S y+S yy                                            (27)
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In (27) we have quadratic dependence on a and b, hence the condition for global minimum  is 
equivalent  for two local minimum  corresponding a and b: 
                                

                                         G (a ,b)→min⇒
∂G (a, b)

∂a
=0 ,

∂G (a,b )
∂b

=0 , (Sxx>0 , S>0 )                (28)

 Of course  when  effective inverse covariance  matrix  depends on  a  the objective  function can
minimized locally only by intercept b. The analytical solution for the two-line equation gives global
minimum [24]:

                                           {a S xx+b Sx=Sxy
a S x+bS=S y

                                                                   (29 a,b)

and solution can be found by determinant method of determinants. Parameters a and b are given 
as:

                                           a=
Δa

Δ
, b=

Δb

Δ
                                                       (30 a,b)

where:                              Δa=S Sxy−Sx S y , Δb=S yS xx−Sx Sxy∧Δ=SS xx−(Sx)
2 .

The uncertainty:  ua of slope  a and  ub for abscissa (intercept)  b  and correlation coefficient  ρab of
parameters  a, b can be determined analytically too. The below equation (33) presents the unique
solution  for  regression  y on  x with  using  the  old  very  well  known  formulas  for  element  of
covariance  matrix   U ab for  non  corelated  case.  But  they  correct  in  the  case  of  autocorrelation
variable y  described by covariance matrix UY .

First the sensitive Jacobian matrix  C is derived [27]. The sensitive coefficients, equal first spatial

derivatives  
∂ Sxy
∂ yi

,
∂ S y

∂ yi
 of parameters of linear regression, determines vector component of e and f:

                             

                                     e i=
∂ S xy

∂ y i
=[UY

−1X ]i , f i=
∂S y

∂ y i
=[U Y

−11]i                               (31a,b)

for  i=1 ,…,n . In  symbolic  notation  it  is:  e=
∂ S xy

∂Y
=UY

−1X=XTUY
−1,  f=

∂S y

∂Y
=UY

−11=1TUY
−1.The

sensitive matrix C for parameters a, b can be written as C= [P , Q ]  and elements of it by:

                                        P= ∂a
∂Y

=
S e−S x f

Δ
,          Q= ∂b

∂Y
=
S xxe−S x f

Δ
                                   (32a,b)

From matrix law of propagation of uncertainty the matrix U ab  for a and b parameters is:
                                                     

                                         U ab=CUYC
T=[PUY P

T PU YQ
T

PUY Q
T QUYQ

T]=[ ua
2 ρabuaub

ρabuaub ub
2 ]                      (33)
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Where: ρab is a correlations coefficient for pair a and b.

Taking advantage of the fact that the UY
−1 is symmetrical as  UY , that is why UY=UY

T , UY
−1=(UY

−1)T and
UY

−1UY=I  unit matrix, it yields:  eUY e
T=XTUY

−1UY (X
TUY

−1)T=Sxx,  f UY f
T=1TUY

−1UY (1
TUY

−1)T=S, and
eUY f

T=f UY e
T=XTUY

−1UY (1
TUY

−1)T=S x and matrix elements  U ab simplify to the form [26]:

                                        ua
2=PU Y P

T= S
Δ
;           ub

2=QU YQ
T=

S xx

Δ
;

                     

                                          ρabuaub=PUY Q
T=

−S x

Δ
                                                 (34 a-c)

The parameters of covariances matrix ua , ub and ρab can be derived analytically and have the same
form as for noncorrelated case, but we can remember that we have more general definitions of S,
Sx , S y , S xy , S xx , S yy parameters  (26a-f):
                                                
                                        ua=√S /Δ;        ub=√S xx/Δ;      ρab=−S x /√S Sxx                                (35 a-c)
               
What is different from classical case e.g. noncorrelated case, that the value   may be zero ? In𝛥
order to demonstrate the possibility of  zero set  ,  we use the procedure of  diagonalization of𝛥
matrix UY . Generalization of patterns for regression y on x of correlated coordinates y can lead to
singularity  (Δ=0?).  The  value  Δ is  calculated  for  the  selected  coordinate  system  of  the  vector
variable X and is equal:
                                             
                                           Δ=S ‧ Sxx−(Sx)

2=1TU Y
−11XTU Y

−1X –(XTUY
−11)2                                       (36)

After  transformation,  using  matrix−linear  orthogonal  operator  DT=D−1: 1=DP and  X=DW
where  P=D−11 and W=D−1X    n – dimensional vectors and 

                                           D−1UY
−1D=[

1
λ1

⋯ 0

⋮ ⋱ ⋮

0 ⋯ 1
λn
]                                                                                  (37)

where λ i- eigenvalues of  matrix UY  , i=1,…,n.  and  performing algebraic operations, the final 
formula for Δ is:

                                           Δ=1
2 ∑i=1

n

∑
j=1

n

(p iw j−p jwi)
2 λi

−1 λ j
−1                                                                  (38)

The final form (38) of  can be always greater than zero if all eigenvalues of 𝛥 λ i>0 for i=1,…,n. It is
possible to zero set formula on  Δ  if at least one eigenvalue is negative. Hence, matrix  UY

−1 (UY )
should be positive definite and all eigenvalues should be positive λ i > 0 to avoid singularity. So we
should assume  that matrix UY  can by positive definite.
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6. Domination of Matrix Ux - Solution For Regression x on y With 
Autocorrelation

At this moment we derive the solution for regression x on y . From  mathematical point of view to
obtain the case when matrix U X  is dominated   it  enough to be done by  swapping X vector with Y
vector and introducing new parameters  W instead  S.  This case occurs when  u(Xi)≠0 and  u(Y i)=0
and  Y p=Y ,  ΔY=0.  Then,  the  full  covariance  matrix  reduces  to  UZ=UX .,
 UZ

−1=U X
−1 and U XY=UY=0 The equation of projecting points can be written in vector form as:

                                          X p=axY p+bx1=axY +bx and X p−X=axY+bx−X                             (39a,b)

Only errors along OX direction are considered and then the objective function  becomes:

                                         G (a ,b)=ΔXTU X
−1ΔX=[X−axY−bx ]TU X

−1[X−axY−bx]                        (40)

From the mathematical point of view this is exactly the same expression as for y on x case using
variable  swapping  X Y→  and  Y X  → and replacing  the  inverse  of  covariance  matrix  UY

−1  by
U−1=U X

−1 . It is  similar like the solution  for regression  y on x also with expression for matrix U ab .

The subscript index x is used to distinguish from the previous one. The solution to the regression
parameters is analogous:

                                         ax=
Δax

Δx

,        bx=
Δbx

Δx

                                                  (41a,b)

where a new notations are of (scalar parameters S are exchanging by W) 

                              Δax=WW yx−W xW y,  Δbx=W xW yy−W yW yx,  Δx=WW yy−(W y)
2 and Δx≠ 0.

Variances uax
2 , ubx

2  and covariance element ρaxbxuaxubx are determined by analogy as 
(34a-c):

                                       uax
2 =W

Δx

,  ubx
2 =

W yy

Δx

,    ρabxuaxubx=
−W y

Δx

                                  (42a-c)

Determining uncertainty for variable y requires the application of the straight line equation:
                                                  

                                            x=ax y+bx                                                                      (43)

And  now  it  necessary  to  carried  out  the  transformation  from  parameters  ax and  bx to  the
parameters a and b and also it must be applied the matrix law of  propagation of uncertainty. The
straight regression line can be transformed into new form fitted to the mode from figure 1.

                                          y= x
ax

−
bx
ax

                                                                         (44)
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 leads to dependencies for the variable y the parameters a, b are given:

                                        a= 1
ax

and b=
−bx
ax

                                                    (45)

The matrix law of propagation of uncertainty as a matrix equation is the following:

                                            U ab=[ ∂ a∂ax ∂a
∂ bx

∂b
∂ax

∂b
∂ bx

]U axbx[ ∂ a∂ ax ∂b
∂ax

∂ a
∂bx

∂b
∂bx

] =
                           

                                           ax
−4[ 1 0

−bx ax][ uax
2 ρabxuaxubx

ρabxuaxubx ubx
2 ][1 −bx

0 ax ]                      (46)

            
Finally in the case of domination of matrix U X the  elements of U ab matrix  can be determined and
these expression will be used in case 3 for testing of proposed algorithm. After the multiplication
and simplification:

                                        ua
2=a4uax

2 =a4W /Δx ,     ub
2=a2(b2W+W yy−2W yb )/Δx ,

           

                                        ρabuaub=
a3 (bW−W y )

Δx

,  and   ρab=
b−

W y

W

√b2+
W yy

W
−

2bW y

W

               (47a,b,c,d)

7. Characteristic Function G(a) for Two Extreme Cases: Domination of 
Covariance Matrix Ux  and Uy

The following are two typical sets of  G(a) characteristic function sets for  a  < 0 and a > 0 for two
extreme cases: domination of matrix UY   and  domination of matrix U X, where analytical solution
for a, b, and U ab  are existing (41,42,45,47). In below cases we have always minimum of the objective
function.  The  G(a) in  both  cases  are  also  analytically  determined  from  (27).  The  mixed
characteristics for more complicated case with cross correlations are expected. In the left side of
two plots below we have two parabolas: dependence on quadratic of  a, and  on the right side we
have parabolic dependence on see a-1 figure 4.
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Figure 4: Characteristic functions G(a) in  green line for a  < 0  and in  red line for a > 0 for two extreme 
cases: a) two plots of G(a) for regression y on x – domination of matrix UY  b) two plots of G(a) for solution 
for regression x on y.

8. Consequences of the New Approach

We  define  matrix β of  weight  coefficients  which  can  be  used  for  identification  of  type  of
regression  x on  y or  y on  x.  As you can see,  there is  an unequivocal relationship between the
weight coefficients  β matrix or its inverse and the slope a  of straight-line regression. We get a
linear matrix dependency for the error vectors in the 0X and 0Y directions. So, from equations for
Δ xvertex and  ΔY vertex corresponding to the value of the minimum (21) of characteristic function

G(a,b), the matrix of weight coefficients („slopes”) of crossing lines is defined as:

                                         β=
ΔY vertex

ΔX vertex

=−(V11+aV 3)(V3
T+aV 22)

−1                                                      (48a) 

or inverse matrix

                                         β−1=
ΔX vertex

ΔY vertex

=−(V 11+aV 3)
−1 (V 3

T+aV 22)                                                    (48b)

From (48) the slope of regression line is determined by matrix β and parts of inverse  covariance
matrix U z

                                        a=−(V 11+β V3 )(V 3
T+ βV22)

−1
                                                       (50)

We can identify regression x on  y and  y  on  x respectively when  β equals zero and inverse
equals β−1 zero. To avoid the problem with the zero determinant of the U z  matrix, we can insert
small variance values respectively to achieve an extremally cases: regression y on x or x on y . From
(48) we have
                                        ΔY vertex=β ΔX vertex    or   ΔX vertex=β−1ΔY vertex                (51a,b)
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In this way regression  x on y can be identified by   β = 0  because of ΔY=ΔY vertex=0 . In the
limit  at  almost  zero  elements  of  the  diagonal  matrix   UY→0(U XY=V 3=0),V 22→∞ (diagonal
elements) is obtained:

                                        β=−(V 11+aV 3)(V 3
T+aV 22)

−1              0                                                  → (52)

Analogically regression  y on x can be identified by β−1 = 0  because of ΔX=ΔX vertex=0 . In the
limit at almost zero elements of the diagonal matrix  U X→0(U XY=V 3=0) ,V 11→ ∞ (diagonal
elements) is obtained:

                                        β−1=−(V 11+aV3)
−1(V 3

T+aV22)     0             →       (53)

In noncorrelated case when  UXY= 0, U X and UY  are diagonal [U X ] ii= u2 (X i),[Uy]ii= u2 (Y i), i=1,..,n. If all
matrixes contain only diagonal elements, then  β=βdiag is also a diagonal matrix
                                               

                                          βdiag=[β11 … 0
… … …
0 … βn n] or   βdiag

−1=[β11
−1 … 0
… … …
0 … βn n

−1]                               (54a,b)

Then the crossing projection lines have slopes β i i=β i=
−1
a

u2(Y i)
u2( Xi )

 i=1,..n, and effective inverse

covariance matrix is diagonal too with elements:

                                          [U Yeff
−1 ]ii=(a2u2 (X i )+u

2(Y i))
−1                                            (55)

As a results (55)  well known method  of effective variance can be applied to find solution for
regression problem. The  β  matrix in noncorrelated case is then diagonal. Other elements of β
matrix are equal zero and the diagonal  elements are the  slops of crossing lines see figure 5.

Figure 5: Interpretation of diagonal elements of matrix βdiag for straight line regression without      
correlation.
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The constant ratio between variances leads to the parallel projections - at this case the analytical
solution  as roots of quadratic equation are available (Deming method)  -  When the  variance are
equals we have perpendicular projections it means the OLS case. In correlated case  the expression
for slope of crossing line are more complicated - all elements of matrix β are existing - its linear
combination between error of x and y. And, when a  matrix β is not exclusively diagonal, it means
that the coordinates x and y are correlated e.g. V 11or V 22 or V 3 are not diagonal . In this case, any
errors selected toward y are a linear combination of all errors in the x direction. Also, any errors
selected toward  x  are a linear combination of all errors in the  y direction. Hence, the slopes for
crossing  lines  in  projections  points  from measurement  points   X ,  Y  on the  fitting  regression
straight line define by mean  points X p ,Y p can be obtained from   

                                     
ΔY vertexi

ΔX vertexi

=
∑
j=1

n

β ij ΔXvertex j

ΔX vertexi

            (56)

and i=1,…,n. In the case when both covariances matrixes are equal  without cross-correlations  and
have the same units we can define the condition  for generalization of orthogonal regression. In the
special  case  when  U XY=0,  the  formula  for  the  slopes  is  reduced  to  the  expression

β=−1
a

V 11V 22
−1=−1

a
U X

−1UY . When both covariance matrixes are equal  U X=UY  then β is diagonal

like in noncorrelated case and all slopes are equal −1
a

       (perpendicular projections). 

Thus,  in  the  case when  both  coordinates  have  the  same  units  as  the  above  case  with
U X=UY ,U XY=0 it can  be defined as a generalization of an orthogonal regression.
Also when all matrixes U X ,UY   and U XY are diagonal the inverse of covariance matrix has the same
structure and  β is diagonal as well as  UYeff

−1  matrix. This is the second case  for testing. In the
special case when U XY,U X ,UY , are diagonal – correlations  between  every pairs x i and y i only, then
are V11 and V22 and V3  diagonal and finally matrix of weight coefficients („slopes”)  β  is diagonal
too (case 2).

                U=[
wx 11 0 0

0 … 0
0 0 wxnn

w xy11 0 0
0 … 0
0 0 wxynn

w xy11 0 0
0 … 0
0 0 uxynn

w y11 0 0
0 … 0
0 0 w y 2n2n

]     =>   U−1=[
v x 11 0 0
0 … 0
0 0 vxnn

v xy 11 0 0
0 … 0
0 0 v xynn

vxy 11 0 0
0 … 0
0 0 vxynn

v y 11 0 0
0 … 0
0 0 v y 2n2n

]
                                                                   =>   βdiag=[β11 … 0

… … …
0 … βnn]                                                  (57)

9. A New Algorithm For Numerical Calculation of Straight Line Regression
Parameters 

Int J Auto AI Mach Learn, Vol 2, Issue 2, December 15, 2021 36



ISSN 2563-7568

The algorithm ( see figure 6) for sampling characteristic G(a), which is a very short procedure, start
from first  step: the matrix UZ  is inverted and partitioned to the four elements. Next the values of
characteristic  G(a) is calculated in series points from left side to the right side of the minimum
with ∆a increment step: at any points the matrix V is determined and inverted – this is the critical
moment of the method  because  this operation must be done with highest accuracy, next inverse
effective of covariance matrix UYeff

−1   is  calculated, also parameters S,  Sx , S y , S xy , S xx , S yy and intercept
b for local minimum. Block G(a)  is repeated at any selected points of a.  Finally value of function
G(a) is determined which satisfy the following relations:  G (ΔX ,a ,b )≥G(a,b)≥ G(a). 

                                                                            
Figure 6: Block diagram for determination numerical characteristic function  G(a), G(b)- (see Appendix B).

The input data are loaded in the EXCEL worksheet and includes formatted input parameters like:
the number of measurement points, all both coordinates of measurement points e.g.  X,Y vectors,
elements of  UX,  Uy and Uxy(U XY

T ) matrixes - it means the whole matrix   UZ  and also increment
step ∆a and left aSL  and right aSR   values of interval  range. A  very short of MATLAB script named
Plot_G.txt is written. In the above script it is used function G  included in G.m file – see Appendix
B. After running script, in a short time,  depending on the number of steps M=integer[(aSR-aSL)/∆a]
the  two  characteristic  G(a)  and  G(b) are  plotted  –  see  
figure 6. We propose the method of determining the minimum with the use manually of zoom
function in MATLAB environment - we zoom in to the minimum area and select two values  of a
and b  where the minimum  is inside in. On this basis we determine the average value and error for

parameters  a and  b.   The  correct  numerical  value  of  slope  is  assumed as  aN=
1
2
(aL+aR): with

numerical  error  εa=
1
2|aL−aR|.  Simultaneously,  the  correct   numerical  value  of  intercept  b is

determined as  bN=
1
2
(bL+bR) with numerical error  εb=

1
2|bL−bR|. 
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Figure 7: Scheme of automatization of determining minimum by increasing/decreasing the values of interval
range  aSL / aRL within the increment step Δa.

The algorithm for automatization for determining of a, b, and U ab is applied– see figure 8.

Figure 8: Block diagram for numerical determination of   U ab matrix –(see Appendix C).

We assume that the only one minimum in the given interval range  [aSL ;aSR ] is always existing for
very small changing of every coordinates. The same method for average  aN , bN  and errors  εa, εb
can be used as for previous manually determine.  If we have  one minimum in the considered
interval range, which is confirmed by  determination of  the characteristic of  G(a) using script
Plot_G.txt (see Appendix B). Then we can apply method of  increasing and decreasing of  a from
both side of  interval range to approach the points very close on the left and right side of minimum
(see Appendix C). Two-way calculation of objective function values in two opposite directions are
used with very small increment step .∆a=5 ·10−8 To avoid the situation of pass-through, the real
minimum of G(a) in increasing or decreasing values a  the correct value of a in the last step should
be decreased (increased) by ∆a/2 during increasing (decreasing) process. In this way we assume
that the curve of G(a) at very close to the minimum is almost symmetric. The method for finding
parameters aN , bN   can be repeated for numerical differentiation  of  parameters a and b due to the
all coordinates to estimate sensitivity matrix C elements  defined by partial derivatives:
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                                          C=[ ∂a∂ Z1

⋯ ∂a
∂Z2 n

∂b
∂ Z1

⋯ ∂b
∂Z2 n

] ,CT=[
∂a
∂ Z1

∂b
∂Z1

… …
∂a
∂ Z2n

∂b
∂ Z2n

]                                                        (58a,b)

So, in order to apply the matrix law of propagation of uncertainty to obtain covariance matrix U ab 
                                                                          

                                          U ab=CU ZC
T                                                          (59)

It is necessary to calculate first  the  sensitivity coefficients by numerical differentiation. Thus
the sensitivity coefficients can be estimated by:

                                          ∂ a
∂Zi

≅
aN (Zi+hi )−aN (Zi−hi)

2hi
, ∂b
∂ Zi

≅
bN (Zi+hi )−bN (Zi−hi)

2hi
              (60 a,b)

and i=1,…,2n .The expressions (60a,b) are closely to the results for Taylor series with rests of third
derivatives.  In most  cases we can assume  hi=h=const i=1,…,2n.  It  is  necessary to optimize the
constant value of h  to minimalize influence of the error due to  third  derivatives a ' ' 'and b ' ' '. So the
coefficients of  C  matrix can be determine by 4 x n for a and for b solutions for modified the input
EXCEL data e.g. vectors X,Y in script U_ab.txt (see Appendix C). It is assumed that h is selected so

the rests with third derivatives in interval range (Zi-h, Zi+h)  expressed by |a ' ' '| h
3

3 !
  and |b ' ' '| h

3

3 !
 can

be negligible in comparison of  εa,  εb. On the one hand, reducing  the value of  h will increase the
error on the matrix coefficients  C.  On the other hand, increasing  the  h-value  may result in an
increase in the error associated with third derivatives.  After several numerical simulations in our
testing cases, the value  h=2 ·10−2 is accepted, which is optimal,  ensuring the determination of
coefficients (60a,b) with a numerical error about 10−5.

The numerical  errors  of   estimation for elements   U ab matrix and  ua ,ub uncertainties  and also
correlation coefficient ρab are given in the following way. From errors of  slops and intercepts with
modified input data the matrix  U ab can be estimated with matrix error ∆U ab:

                      U ab±∆U ab=Uab±2∆CU ZC
T ,                                                            (61)

where numerical errors of sensitivity matrix are given by:     ∆C= 1
2h [εa1 , … ,εa 2n

εb1 , … ,εb 2n
] 

where    εai=|ε+ai|+|ε−ai| andεbi=|ε+bi|+|ε−bi|and i=1,…, 2n, and index (+) means for  the 
approaching Zi+hi and index (-) means for the approaching   Zi−hi to obtain minimum of G(a).

In the considering the worst case,  because of this U Z is the symmetric matrix and all  absolute
values  of  four  elements  of  matrix  ∆CUZ∆CT  are  always  much  smaller  than  corresponding
absolute values of four elements  of matrix  2∆C|UZC

T|, the positive values of errors of  covariance
matrix ∆U ab can be estimated as:
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                   ∆Uab=[∆Uab 11 ∆U ab12

∆Uab 21 ∆U ab22
]=2∆C|U ZC

T|       (62)

Then the numerical results are:  uaN=√U ab11 ,ubN=√U ab 22 and ρabN=U ab 12/(uaN ubN)  and have the
maximum numerical errors estimated by:

                  Δua=|uaN−√uaN2 −∆U ab11|>|√uaN2 +∆U ab11−uaN|,      (63a)

                  Δub=|ubN−√ubN2 −∆U ab22|>|√ubN2 +∆U ab11−ubN|,                           (63b)

                                       Δ ρab=| |ρabNuaNubN|+max (|∆U ab 21|,|∆U ab12|)
(uaN−Δua)(ubN−Δub )

−|ρabN| | >

                                                  

                                     >  | |ρabN|−|ρabNuaN ubN|+max(|∆U ab21|,|∆U ab12|)
(uaN+Δua)(ubN+Δub)

 |                               (63c)

Of course it is assuming that ρab ΔuaΔub≈ 0 . The accuracy of each numerical method is limited
by a finite decimal representation of the variables used and by the error of method caused by the
use of approximate mathematical formulae. For each method that coincides with the numerically
determined value, it is necessary to estimate numerical errors, since the numerical solution is not
specified exactly. For the algorithm used, the truncating errors caused by the finite representation
of the number  seems to be omitted and negligible – the values of the numbers on which the
calculations are performed in MATLAB have an accuracy above 10-10  and only the method errors
estimated above remain. So the numerical results are burdened with errors:  a=aN ±ε a,  b=bN ±εb,
ua=uaN± Δua ,ub=ubN ± Δub and ρab=ρabN±Δ ρab .

The effectiveness of  the  method has been demonstrated in  three  examples used for  testing in
previous  publications  [9,10,12].  The  implementation  is  prepared  in  MATLAB  enviroment-see
Appendix B and C. 

10. Testing Cases

Three testing cases of input data analyzed  before [14,7,5] are considered.

First Pearson’s data  with York’s weights as noncorrelated case which represents a case of a highly
varying uncertainty  - strong heteroscedasticity  in both variables is analyzed. Input data are stored
in the Table 1. This situation arises when the variances of the observed values are unequal, but
where  no  correlations  exist  among  the  observed  variances.  So  the  covariances  matrixes  are
diagonal and Uxy=0  In the four figures below the four characteristics of numerical function G(a)
and  G(b),  obtained from script Plot_G.txt are demonstrated see figure  9 for different increment
steps from 5.10-8 to 10-10.
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a) ∆a=5.10−8

          
b) ∆a=5.10−9

           
c) ∆a=10−9

             
d) ∆a=10−10
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Figure 9: Characteristics of G(a) and G(b) for various increment step: a) ∆a=5 ·10−8 ,  b)
∆a=5 ·10−9  c) ∆a=10−9  d) ∆a=10−10 .

As we see  from figure  9  a)  ∆a=5 ·10−8  the  characteristic  is  very  smooth,  regular  and the
proposed  algorithm  from  fig.8  can  be  used  for  determination  of  a,  b  parameters  and  matrix
Uab while for very small value increment step 10-10 the accuracy of parameters of straight regression
line will be worst  due to not regular characteristic which is required a special filtering algorithm to
find trend line - see figure 9 d). It easy to notice that the main reason for this chaotic numerically
determined function G is the library function designating the inverse matrix V with very small step
∆a . This chaotic course increases with decreasing increment step -see figure 9 b), c) and d). The

very critical moment which limits the accuracy of calculations is the library MATLAB  function  for
inversion of matrix V. So to obtain better accuracy than 10-8 for slope of a (maximum accuracy for
G(a) is eleven digit) is required to prepare own function for inversion of matrix V, based on much
more representative digits because of domination of truncation error. That why we used in our
tests increment step equal  ∆a=5 ·10−8  from figure 9 a) and we have reduced the maximum
accuracy.

The most accurate values can be read manually for the smallest increment step equal 10-10  using
Plot_G.txt script from figure 9 d. The maximum accuracy of slope is almost eight digits after point.
The plotting of this characteristic in a very tin interval range takes few second of calculation on the
platform  Intel(R) Core(TM) i5-1035G4  CPU @ 1.10GHz  1.50 GHz  RAM 12,0 GB  Flash SSD  512
GB ,  but  the  use  of  this  step  value  for  automation  requires  method  of  a  filtering  algorithm,
determining the trend of lines.

The  very  good  agreement  between  proposed  and  previous  methods  of  accuracy  of  a and  b
parameters are  obtained, but in the case of uncertainties  only almost four digits after point are
identical.  Therefore  according  to  table  1  the  best  accuracy  for  uncertainties  and  correlation
coefficient  is obtained for proposed method.

Table 1: Data, the results and the errors obtained for numerical method- U_ab.txt script aSL=-0,483; aSR-
0,476; h=0,02; ∆a=5 ·10−8 . Output data is saved to the result.txt file.

                                                               
Point no. xi u-2(Xi) Yi u-2(Yi)

1 0 1000 5,9 1
2 0,9 1000 5,4 1.8
3 1,8 500 4,4 4
4 2,6 800 4,6 8
5 3,3 200 3,5 20
6 4,4 80 3,7 20
7 5,2 60 2,8 70
8 6,1 20 2,8 70
9 6,5 1.8 2,4 100

10 7,4 1 1,5 500

Input data
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Parameter

Proposed WTLS
numerical
solution

Maximum numerical
errors
εa

εb ,∆ ua ,
∆ub∆ ρab

Method by
Ref.[10]

Method by
Ref.[12]

Exact
Solution

a −0,48053337 5.10-8 −0,48053341 −0,48053341 −0,48053341
b 5,47991007 2,4.10-7 5,47991022 5,47991022 5,47991022

ua 0,05761755 10-7 0,05798501 0,05757171 -
ub 0,29193582 2,9·10-6 0,29497073 0,29237148 -
ρab −0,96230411 9,3·10-6 −0,96309914 −0,96241604 -

Results

Based on the a- slope parameter matrix  β  is  also determined and straight line regression with
crossing lines and measurement points are plotted – see figure.10.

                                                
Figure 10: Matrix β and the crossing lines with measurement points for first case.

In the case 2 the input data is given in table with cross-correlations coefficients,  with assumption
of diagonal matrix  Ux,Uy and Uxy. Hence the cross-correlations is taken only into account. The
results and numerical errors of the proposed method, and also results of previous method  are
given in table 2 Result I.

Table 2: Data, the results and the errors obtained for numerical method- U_ab.txt script  (aSL=1.98; 
aSR=2,03, h=0,02, ∆a=5.10-8). Output data is saved to the result.txt file.

                                  

Point no. xi u(xi) yi u(yi) ρxiyi

1 0,9995 0,005 3,0073 0,009 0,5
2 1,9968 0,002 5,0105 0,009 0,55
3 3,0009 0,005 7,0061 0,007 0,6
4 3,9969 0,004 8,9939 0,008 0,65
5 4,9998 0,002 11,0034 0,014 0,7
6 6,0025 0,007 12,9995 0,001 0,75
7 6,9875 0,014 15,0008 0,002 0,8
8 7,9962 0,013 17,0012 0,005 0,85
9 9,0045 0,013 19,004 0,006 0,9
10 9,9891 0,006 20,9959 0,002 0,95

                                                                                   Input data      
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Parameter Proposed WTLS
numerical solution

Maximum numerical
errors

εa εb ,∆ua
∆ub∆ ρab

Method by
Ref.[10]

Method by
Ref.[12]

a 2,00010587 5.10-8 2,00010589 2,00010590
b 1,00659374 2,1.10-7 1,00659367 1,00659365

ua 0,00122460 5.10-8 0,00122506 0,00122460
ub 0,00607293 1,5.10-7 0,00607500 0,00607294
ρab −0.84511293 1,1.10-5 −0,84522792 −0.84511327

                                                                                   Results I

Parameter
Proposed WTLS

numerical solution
Maximum numerical errors

εa εb ,
Analytical solution

(Appendix A)

Correlation
coefficient

ρ
a 2,00013000 7,5.10-8 2,00013003

0,5b 1,006805234 4.12.10-7 1,00680519
a 2,00013427 5.10-8 2,00013433 0,9
b 1,00678184 2.75.10-7    1,00678155

                                           Results II  Ux=0,006, Uy=0,009, coordinates are used from Input data                 

Figure 11: Matrix β  and the crossing lines with measurement points for second case.

As it is shown in table 2 (Results I) the agreement in a and b parameters is no less than seven digits
after point while in uncertainties  we have almost six digits identical and in correlation coefficient
we have almost four digits identical. From columns of errors the proposed method is able to be
rather more accurate than previous. Additionally the case (Results II)  of the same correlations
between measured X and Y coordinates with constant uncertainties at the measurement points
according  to  the  analytical  solutions  included  in  Appendix  C  gives  almost  seven  digits  of
accuracy. The matrix  β and regression line with crossing lines you can find on figure 11.

The third example case uses input including correlations within x and y and cross-correlations  x
between y [1].The covariance symmetric  matrices  Ux and Uy and Uxy and also asymmetric  UXYA

are defined by:

1 0,2 0,2 0,2 0,2
0,2 1 0,2 0,2 0,2

Ux=Uy=(0,01)2 0,2 0,2 1 0,2 0,2
0,2 0,2 0,2 1 0,2
0,2 0,2 0,2 0,2 1

0,2 0,1 0,1 0,1 0,1
0,1 0,2 0,1 0,1 0,1

Uxy=(0,01)2 0,1 0,1 0,2 0,1 0,1
  0,1 0,1 0,1 0,2 0,1

0,1 0,1 0,1 0,1 0,2

(64a,b)
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0,2 0 0 0 0
0,1 0,2 0 0 0

U XYA=(0,01)2 0,1 0,1 0,2 0 0      
0,1 0,1 0,1 0,2 0
0,1 0,1 0,1 0,1 0,2

(64a,b,c)

Table 3: Data for analytical solutions and results and errors obtained for numerical method -U_ab.txt script
(aSL=1,98; aSR=2,04; h=0,02; ) for above covariances matrixes UX and UY and UXY(UXYA). Output data is saved
to the result.txt file.
                                                                                             

Point
No

xi yi

1 1,0089 3,013
2 1,9905 5,0022
3 2,9896 6,9923
4 3,9907 9,0116
5 4,9695 10,9815

 Input data       

Parameter Proposed WTLS
numerical solution

Numerical
errors

εa , εb , ∆ua
∆ub∆ ρab

Method by
Ref.[6]

a 2,01043975 2.10-8 2,01043979
b 0,98922682 7.10-8 0,98922669
ua 0,00607387 10-8 0,00607382
ub 0,02151838 1,5.10-7 0,02151819
ρab −0,84392639 8,5·10-6 −0,84392476

Results I 

Parameter

Domination of
Uy

Uz=Uy

Analytical solution

β−1=0

WTLS numerical solution
U Z→U Yeff

−1

UX→0 u2(X i)=10−10

β−1→0

Domination of 
Uy

Uz=Uy

Analytical
solution
β1=0

WTLS numerical solution
U Z→U Yeff

−1

U Y→0

u2(Y i)=10−10

β→0

a 2,01043126 2,01043125 2,01044147 2,01044150
b 0,98925221 0,98925223 0,98922166 0,98922159
ua 0,00285081 0,00285081 0,00573149 0,00573149
ub 0,01042351 0,01042348 0,02095614 0,02095619
ρab −0,81771599 −0,81771431 −0,81771817 −0,81771921

Results II

                                                                                        Results III
For fully correlated case ( Results I) we have almost seven digits identical  for a, b Uab parameters
and  almost five digits identical for correlation coefficient. The results presented in Table 3 Ref. [6]
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Parameter 
Proposed WTLS 

numerical solution
for asymmetric matrix

UXYA

Numerical
errors
εa ,

εb ,∆ua
∆ub∆ ρab

a 2,01043995 7.10-8

b 0,98922622 2,2.10-7

Ua 0,00590329 5.10-8

Ub 0,02146788 6,5.10-7

ρab −0,82216794 4,3·10-5
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in the last columns confirm the conformity of the numerical values obtained with those previously
published taking  into account the errors.  We obtain  additional  symmetric  matrix   β   and
parallel projections – see figure 12. In comparison to the noncorrelated case we have 4-16% percent
of widening  of coverage corridor.

Simulations have been also made (Results II) using the WTLS  for covariances matrix  Uz where it
has been assumed Uxy=0 confirming its convergence with analytical solutions for    regression y on
x (30,34,35) where matrix   Ux 0   has diagonal elements → (0,0001)2  and solution for  regression x on
y (42,45,47) where  matrix Uy 0→   has  diagonal elements (0,0001)2. Results have been obtained in
accordance  with  the  analytical  solutions  in  table3  ResultsII  with  an  accuracy  of  for  7.10-8

uncertainties and correlation coefficient 10-6.

Table 3 of Results III contains the results for the symmetric convariance matrix set Ux and Uy and
an asymmetric matrix representing cross correlation UXYA.

                                            

                             

Figure 12: Matrix  β and the crossing lines with measurement points for third case.

In the final phase – third  case for different representation of matrix Uz for fully correlated random
variables),  the  expanded  two  uncertainties  with  extended  coefficient  t0,95 ;5−2≅ 2,35 and  the
correlation coefficient ρ y1 ,2  are determined from the two chosen points from straight regression
line  with maximum numerical errors less than 10−5  for y and correlation coefficient – see table
4.

In table  4 we have five different cases for two point of straight regression line: the widest confident
interval is  for autocorrelation  Ux,Uy, a little smaller is for fully correlated matrix (case 3),  and
smallest for noncorrelated case when we have the smallest correlation coefficient  excluding two
extreme cases with only  Ux or Uy matrixes. For asymmetric  UXYA case  the confident  interval is
smaller than in the case of lack of positive cross correlation but it widest when  the matrix UXY is
symmetric with positive elements.

Table 4: Confident  interval and correlation coefficient for two selected points of straight line 
regression in third case with different configuration of matrixes Ux,Uy,Uxy.
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Representation of matrix  Uz

Coordinates y with expanded uncertainty 
Correlation
coefficient 

ρ y1,2for the first point
x1=2,0000

for the second point
x2=2,9889

Ux, Uy-diagonal, Uxy=0
Noncorrelated case

y1 =5,0101  ± 0,0289 y2 = 6,9982± 0,0236 0,8175

Ux,       Uy=0 y1 =5,0101± 0,0314 y2 = 6,9982± 0,0284 0,9051

Uy,       Ux=0 y1 =5,0101± 0,0 156 y2 = 6,9982± 0,0141 0,9051

Ux,Uy,      Uxy=0 y1 =5,0101± 0,0 350 y2 = 6,9982± 0,0317 0,9051

Ux,Uy,Uxy,UTxy y1 =5,0101± 0,0306 y2 = 6,9982± 0,0272 0,8871

Ux,Uy,UxyA,UTxyA  y1 =5,0101± 0,0318 y2 = 6,9982± 0,0287 0,9024

11. Summary and Conclusion 

A  simple  and  fast  algorithm  for  directly  minimizing  objective  function  to  solve  straight  line
regression  problem  is  presented.  The  algorithm  can  be  used  in  any  lab  to  plot  numerical
characteristic of objective function and answer the question, “is it possible to minimize objective
function  at  given  measurement  data  with  given  covariance  matrix  to  estimate  the  confidence
region  of  straight  line  regression?  The  work  demonstrates  the  linear  regression  method  for
correlated variables – fully correlated covariance matrix. The proposed numerical algorithm, which
bypasses numerical minimization objective function due to the location of the projection points
because of analytical derivation, is extremely fast and precise at determining the characteristic of
the objective function as one-dimensional input parameters. In the case of noncorrelated data none
of  additional  condition is  required.  In  correlated case  matrix V must  be  positive  definite  –  at
minimum of G(a) and  in considered interval  range and  the matrix UYeff

−1  should have sum of all
elements greater than zero or matrix  UYeff

−1 should be positive definite to avoid singularity. The
analyzed interval  range of slope  should be chosen  from selected extreme points, scattered on the
XOY plane. Confirmation of the possibility of minimizing function G(a) is the receipt within the
considered range of minimum. When V is not positively definite the proposed method  can not be
applied  -  when all eigenvalues of matrix V  are  negative  the  G(a) will  have maximum  - no
possibility  to  minimalizing  G(a) function.   The  short  algorithm,  has  been  implemented  in  in
MATLAB scripts Plot_G.txt and U_ab.txt tested in three analyzed cases,  published in previous
articles. The numerical method is convergent to the classical cases with analytical solutions for the
a  and  b parameters and their covariance matrix  Uab.  The effectiveness and reload of presented
method  is confirmed.

Conflict of interests: The authors declare that there is no conflict of interest.
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Appendix A
In order to illustrate accuracy of numerical method implemented in  Uab .txt script we compare the
numerical  results  with  analytical  solution  of   least  square  method given in  this  section.  We
analyzed case with  the effect of correlation  between measured coordinates xi and yi with the same
coefficient ρ  and identical uncertainty constants, u(xi)=ux and u(yi)=uy    

Where i=1,...,n In this case the covariance matrix are described  by

                                                                    

                                                                U Z=[ U X U XY

U XY
T UY

]
where the covariance matrixes  Ux, Uy are diagonal with constant variances
                                

                                                  U X=[ux
2 … 0
… … …
0 … ux

2] ,U y=[u y
2 … 0
… … …
0 … u y

2]
and covariance matrix   Uxy has  constant elements on diagonal i.e. elements  with the same 
correlation coefficient ρ :

                                                          U XY=[ρuxu y … 0
… … …
0 … ρuxu y

]
                                                    

In this case effective inverse covariance matrix  UYeff
−1  is diagonal too with the same values on

diagonal.The analytical  solution in this particular case is existed and it seems like in the case of
analytical solution as the root of the

Object 1578

corresponding quadratic equation i.e. like in Deming method.
Our objective function in this case is defined as:

                                           G (a, b)=∑
i=1

n ( y i−a x i−b)
2

ueff
2

where the effective uncertainty is equal to ueff
2 =u y

2−2 ρauxu y+a
2ux

2

The objective function  takes the minimum if two conditions for zero derived values a and b are 
met the conditions:
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                       1)    
∂G (a ,b)

∂ a
=0          and      2)  

∂G (a ,b)
∂ b

=0        

From the second condition follows the dependence:

∑
i=1

n

−2( y i−a x i−b)=0

And  ∑
i=1

n

( y i−a x i)=nb  leads to the equation

                                                      b= y−a x

Inserting above relations into the first condition we obtain:

     ∑
i=1

n ( y i−a x i− y+a x )(x−xi)ueff
2 −(aux

2−ρuxu y)( yi−a xi− y+a x)2

ueff
4 =0

Simplifying the expression  we get a quadratic equation:
                   
                                   Aa2+Ba+C=0

where coefficients A,B,C are determined by:

                                             A=−ux∑
i=1

n

(x−x i)(ρu y(x−x i)+ux( y i− y )) ; 

                                  B=∑
i=1

n

(x−x i)
2uy

2−ux
2( y i− y )2;

                                    C=u y∑
i=1

n

( y i− y)(u y(x−x i)+ρux( y i− y)).

 So, the solution is given by the root of quadratic equation for the minimum of G(a,b), i.e. when 
there is a change in the sign of the quadratic function from minus to plus. We always choose the 
sign (+).

                                          a=−B+√B2−4 AC
2 A

 and    b= y−a x

Appendix B

Below the  script  for  determination of  characteristic  G(a)  and G(b)  -  the  file  Plot_G.txt  with G
function - the file G.m
file Plot_G.txt
% script for determination of the numerical characteristic of G(a) and G(b)
clear all                        
close all
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clc 
% reading EXCEL data file name Case  -  changing input data by changing name of file                               
INPUT = xlsread('Case_333');          
% reading number of points from EXCEL data
N=INPUT(3,1);                     
% reading coordinates from EXCEL data
for i=1:N                         

x(i)=INPUT(i,5);
y(i)=INPUT(i,6);

% reading covariance matrix from EXCEL data
  for j=1:2*N

U(i,j)=INPUT(i,j+6);      
U(i+N,j)=INPUT(i+N,j+6);

  end;
end;
% reading the step size from EXCEL data
del_a=INPUT(3,2);                  
% reading aL the  left limit of interval from EXCEL data
a_L=INPUT(3,3);                    
% reading aR the  right limit of interval from EXCEL data
a_R=INPUT(3,4);                   
% number of steps
M=fix((a_R-a_L)/del_a);            
x=x(:);                           
y=y(:);
V=inv(U);
H=ones(1,N);
H=H(:);
%the  parts of inverse of covariance matrix
for i=1:N                           
  for j=1:N
          V_11(i,j)=V(i,j);
          V_22(i,j)=V(i+N,j+N);
          V_3(i,j)=V(i,j+N);
  end;
end;
V_33=transpose(V_3)+V_3;
% loops generating points for numerical characteristic  
for k=1:M                         
        a_plot(k)=a_L+k*del_a;
        [G_ak(k), b_plot(k)]=G(a_plot(k),V_11,V_33,V_22,V_3,x,y,H);
end
% ploting G(a)
subplot(1,2,1);plot(a_plot,G_ak,'b-') 
title('G(a)');xlabel('a')
grid on
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% ploting G(b)
subplot(1,2,2);plot(b_plot,G_ak,'r-') 
title('G(b)');xlabel('b')
grid on

file G.m
function [G_a,b]=G(a,V_11,V_33,V_22,V_3,x,y,H)  
% numerical determination of value G(a)  and b(a)
U=inv(V_11+a*V_33+a^2*V_22);
V=V_22-(transpose(V_3)+a*V_22)*U*(V_3+a*V_22);
S_XX=transpose(x)*(V*x);
S_X=transpose(x)*( V*H);
S_XY=transpose(x)*( V*y);
S=transpose(H)*(V*H);
S_Y=transpose(y)*( V*H);
S_YY=transpose(y)*( V*y);
b=(S_Y-S_X*a)/S;
G_a=a^2*S_XX+2*a*b*S_X-2*a*S_XY+b^2*S-2*b*S_Y+S_YY;
end

Appendix C 
Below the scripts for determination of  a, b parameters and the covariance matrixU ab - the file U-
_ab.txt with G_ab function- the file G_ab.m ( G.m is also needed).All output data are saved to the
d:\results.txt  - default output text file.

file U_ab.txt
%approaching the right corner of the minimum
          [aR, bR]=G_ab(asR,-dela,V_11,V_33,V_22,V_3,xw,yw,H);
%the numerical results of slope, intercept and their numerical  errors
          a_pm(j)=(aL+aR)/2;
          deltaa_pm(j)=abs(aR-aL)/2;
          b_pm(j)=(bL+bR)/2;
          deltab_pm(j)=abs(bR-bL)/2;
  end;
%elements of martix delC
  delaa(i)=(abs(deltaa_pm(1))+abs(deltaa_pm(2)))/(2*h);
  delbb(i)=(abs(deltab_pm(1))+abs(deltab_pm(2)))/(2*h);
%numerical differentiation of slope and intercept due to the coordinates- elements of matrix C
  AA(i)=(a_pm(1)-a_pm(2))/(2*h);
  BB(i)=(b_pm(1)-b_pm(2))/(2*h);
end;
delaa=delaa(:);
delbb=delbb(:);
AA=AA(:);
BB=BB(:);
%matrix C
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AB=[AA,BB];
%matrix Uab
UAB=transpose(AB)*(U*AB);
%matrix delC
delC=[delaa,delbb];
%matrix delUab
delUAB=2*transpose(delC)*(U*AB);
%output data of matrix Uab
ua=sqrt(UAB(1,1))
ub=sqrt(UAB(2,2))
delua=abs(sqrt(UAB(1,1))-sqrt(UAB(1,1)-delUAB(1,1)))
delub=abs(sqrt(UAB(2,2))-sqrt(UAB(2,2)-delUAB(2,2)))
ro=UAB(1,2)/(ua*ub)
delro=abs((ro*ua*ub+max(abs(delUAB(2,1)),abs(delUAB(1,2))))/((ua-delua)*(ub-delub))-ro)
%matrix BETA
BETA=-(V_11+aN*V_3)*inv(transpose(V_3)+aN*V_22);
%error vector of X
D_V_X=-(transpose(V_3)+aN*V_22)*inv(V_11+aN*V_33+aN^2*V_22)*(y-aN*x-bN*H);
%error vector of Y
D_V_Y=(V_11+aN*V_3)*inv(V_11+aN*V_33+aN^2*V_22)*(y-aN*x-bN*H);
slopes=D_V_Y./D_V_X;
%writting output data to the results.txt file
fileID = fopen('d:\results.txt', 'w');
fprintf(fileID,'a=%12.8f\n dela=%12.8f\n b=%12.8f\n delb=%12.8f\n',aN,deltaaN,bN,deltabN);
fprintf(fileID, 'ua= %12.8f  \n delua=%12.8f  \n ub=%12.8f  \n delub=%12.8f  \n ro=%12.8f  \n delro=
%12.8f \n',ua,delua,ub,delub,ro,delro);
fprintf(fileID,  'MATRIX BETA= \n');
for i=1:N
  for j=1:N
          fprintf(fileID, '%12.8f',BETA(j,i));
  end;
fprintf(fileID,  ' \n');
end
fprintf(fileID,  'SLOPES OF CROSSING LINES= \n');
for i=1:N
          fprintf(fileID, '%12.8f',slopes(i));
end;
fclose(fileID);
display('Output data are saved in d:\results.txt file')
file G_ab.m
function [a_previous, b_previous]=G_ab(a,dela,V_11,V_33,V_22,V_3,x,y,H)
%function for the numerical determination of parameters a, b  situated very close to  the left or right of side
of the minimum
[G_next, b]=G(a,V_11,V_33,V_22,V_3,x,y,H);
G_previous=G_next+0.1;
while G_previous > G_next
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a_previous=a;
G_previous=G_next;
a=a+dela;
[G_next, b]=G(a,V_11,V_33,V_22,V_3,x,y,H);
end
% special case for the widening numerical errors because of pass through the minimum
a_previous=a_previous-dela/2;
[G_next, b_previous]=G(a_previous,V_11,V_33,V_22,V_3,x,y,H);
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