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Abstract 
 
The integration of neuromorphic computing into the Dynex platform signifies a 
transformative step in computational technology, particularly in the realms of machine 
learning and optimization. This advanced platform leverages the unique attributes of 
neuromorphic dynamics, utilizing neuromorphic annealing - a technique divergent from 
conventional computing methods - to adeptly address intricate problems in discrete 
optimization, sampling, and machine learning. Our research concentrates on enhancing 
the training process of Restricted Boltzmann Machines (RBMs), a category of generative 
models traditionally challenged by the intricacy of computing their gradient. Our 
proposed methodology, termed “quantum mode training”, blends standard gradient 
updates with an off-gradient direction derived from RBM ground state samples. This 
approach significantly improves the training efficacy of RBMs, outperforming traditional 
gradient methods in terms of speed, stability, and minimized converged relative entropy 
(KL divergence). This study not only highlights the capabilities of the Dynex platform in 
progressing unsupervised learning techniques but also contributes substantially to the 
broader comprehension and utilization of neuromorphic computing in complex 
computational tasks. 
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1. Introduction 
 
The evolution of machine learning technologies [1], especially in the realm of unsupervised 
learning [2] through Restricted Boltzmann Machines (RBMs) [3], marks a significant stride in 
our understanding and manipulation of complex data structures. However, the journey is not 
without its challenges. This paper seeks to address a critical aspect of this journey: the 
limitations inherent in the traditional methodologies of training RBMs [4] and the 
revolutionary potential of neuromorphic computing [5], particularly through the application 
of Quadratic Unconstrained Binary Optimization (QUBO) [6]. 
 
One of the pressing issues in the field of neural networks, including RBMs, is their 
vulnerability to adversarial examples [7] - minor input perturbations that can significantly 
mislead the network [8]. This vulnerability highlights the need for robust training methods 
that can enhance the generalization capabilities of these networks. Pretraining [9], a method 
known for its strong regularization effects, emerges as a potential solution. By improving the 
unsupervised training of RBMs, we can expect to achieve more robust models that are less 
susceptible to adversarial examples and exhibit enhanced performance in subsequent tasks. 
 
Our research introduces a pivotal advancement in the training of Restricted Boltzmann 
Machines (RBMs) by employing ’quantum mode training’, a methodology distinctly 
divergent from traditional RBM training approaches like Contrastive Divergence (CD) [10]. 
Traditional RBMs typically rely on CD, which employs Markov Chain Monte Carlo [11] 
(MCMC) methods to approximate the likelihood gradient for weight updates. This often leads 
to challenges such as getting trapped in local maxima. In contrast, our Mode-Assisted 
Quantum Restricted Boltzmann Machines adopt a novel ‘mode hopping’ technique. This 
technique involves calculating the mode (ground state) of the RBM for a given input 
configuration and then updating the weights based on this mode, at specific intervals. This 
mode-hopping approach allows for more stable and efficient training by directly leveraging 
the ground state information to inform weight adjustments, bypassing the limitations of 
traditional MCMC methods and enhancing the RBM’s ability to navigate complex data 
landscapes. 
 
To implement our methodology, we integrate standard gradient updates with updates 
derived from samples of the RBM’s ground state, a task that aligns with solving an NP-hard 
QUBO problem [12]. While there are existing platforms like the D-Wave API [13] that offer 
quantum computing capabilities, we chose the Dynex platform for its unique attributes. 
Specifically, Dynex [14] stands out due to its global accessibility and open API, making it an 
ideal choice for widespread academic and research applications. The Dynex platform’s 
quantum QUBO solver demonstrates remarkable efficiency in sampling the ground states of 
complex non-convex landscapes, a crucial factor in our decision. This choice not only 
facilitates practical and efficient mode sampling in large datasets but also aligns with our goal 
of providing an easily accessible and user-friendly quantum computing resource for the wider 
scientific community. By employing Dynex’s quantum QUBO solver, we effectively 
circumvent the limitations of traditional methods such as contrastive divergence (CD) and its 
variants, thereby offering a more accurate and efficient training method for RBMs. This 
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approach reflects our commitment to leveraging cutting-edge technology that is not only 
powerful but also inclusive and accessible to a broad spectrum of users. 
 
The integration of neuromorphic computing into the RBM training process, particularly 
through the Dynex platform’s quantum QUBO solver, represents a groundbreaking shift in 
our approach to unsupervised learning. This solver, central to our methodology, exploits the 
principles of quantum computing [15] to rapidly and accurately identify the ground states in 
RBM’s complex energy landscapes. By efficiently finding these states, it allows for a more 
direct and effective method of updating the weights in the RBM, thereby addressing one of 
the critical challenges in traditional RBM training. 
 
In this paper, we demonstrate that by using the Dynex solver as a rapid QUBO solver, we can 
significantly enhance the mode training process. The solver’s ability to quickly find optimal 
or near-optimal solutions to the QUBO problem enables a more precise adjustment of the RBM 
weights, leading to a substantial improvement in the machine’s learning capability. This 
approach not only speeds up the training process but also results in a more robust model, 
capable of capturing the intricate structures and patterns in data that were previously elusive. 
 
Our methodology presents a unique convergence of advanced computational techniques - 
neuromorphic computing [5], and machine learning. This synergy not only overcomes the 
inherent limitations of traditional RBM training methods but also sets a new benchmark in 
the field of unsupervised learning [16]. The paper further explores the implications of this 
approach, demonstrating its superior performance in various applications, from pattern 
recognition to data compression. 
 
In conclusion, our work not only elucidates the potential of neuromorphic computing in 
enhancing the training of RBMs but also contributes significantly to the broader field of 
machine learning. By leveraging the cutting-edge capabilities of the Dynex platform, we 
present a novel and effective approach to unsupervised learning, paving the way for more 
sophisticated and capable machine learning models in the future. 
 
2. Background and Related Work 
 
Restricted Boltzmann Machines (RBMs) are a class of generative stochastic artificial neural 
networks that can learn a probability distribution over its set of inputs [17]. They play a pivotal 
role in the field of unsupervised learning, often used for dimensionality reduction, 
classification, regression, collaborative filtering, feature learning, and topic modeling [18]. 
RBMs consist of two layers: a visible layer for input data and a hidden layer for feature 
detection, interconnected without intra-layer connections, a restriction that simplifies the 
learning algorithm. 
 
Traditionally, RBMs are trained using methods like contrastive divergence (CD) or its variant, 
Persistent Contrastive Divergence (PCD) [19]. These approaches employ Gibbs sampling, a 
Markov Chain Monte Carlo (MCMC) technique, to approximate the likelihood gradient 
necessary for weight updates in the network. While effective in many scenarios, these 
traditional training methods do present certain challenges. For instance, they might encounter 
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difficulties in consistently escaping local optima, potentially leading to suboptimal 
performance. Additionally, there’s a possibility that they may not always align with the 
model’s exact likelihood gradient due to their approximate nature [20]. Furthermore, the 
computational demand of these methods tends to increase with larger datasets, although this 
is often manageable with modern computing resources. These limitations, while noteworthy, 
are balanced against the practical utility and success of RBMs in various applications [21]. 
 
Recent advancements in RBM training [22] have introduced a method combining RBM’s mode 
(ground state) sampling with data-initiated chains, similar to Contrastive Divergence (CD). 
This hybrid approach significantly improves RBM model quality and training stability. It 
utilizes both dataset samples and the RBM model’s mode samples to suppress spurious modes 
during training. Unlike ’mode hopping’ MCMC methods, this technique uses the mode 
directly for weight updates, avoiding the common pitfall of the Markov chain getting stuck in 
high-energy states. This method’s efficiency is a key advantage, allowing for more effective 
exploration of the RBM’s multi-modal energy landscape. To implement this technique, 
standard gradient updates are supplemented with updates derived from the ground state 
samples of the RBM. The challenge here lies in finding the ground state, akin to solving a 
Quadratic Unconstrained Binary Optimization (QUBO) problem, which is NP-hard [23]. 
 
In this study, we advance the field of RBM training by leveraging the capabilities of quantum 
computing, specifically through the use of the Dynex QUBO sampler [24]. Our approach, 
termed “quantum mode training,” represents a significant departure from traditional 
gradient-based methods [25]. By harnessing the Dynex QUBO sampler, we effectively utilize 
quantum computing principles to address the complex problem of finding the RBM’s ground 
state [26] - a task essential for the mode-based training method and inherently challenging 
due to its NP-hard nature. 
 
The integration of the Dynex QUBO sampler offers a unique advantage. It capitalizes on 
quantum computing’s ability to efficiently navigate complex, high-dimensional optimization 
landscapes [27], which is critical for accurately sampling the RBM’s ground state. This 
quantum-enhanced approach not only improves the efficiency and accuracy of weight 
updates in RBM training but also aligns with the broader trend of incorporating advanced 
computational paradigms into machine learning. By embracing quantum computing 
techniques, our study not only tackles the inherent limitations of classical computational 
methods but also paves the way for more sophisticated and efficient machine learning models. 
This integration showcases the potential of quantum computing in revolutionizing the 
landscape of unsupervised learning, setting a new standard for RBM training and beyond 
[28]. 
 
3. Methodology 
 
The conventional training of RBMs predominantly relies on Contrastive Divergence (CD) and 
its variants. This method approximates the gradient of the log-likelihood using Gibbs 
sampling [29], a Markov Chain Monte Carlo (MCMC) technique. Mathematically, the update 
rule for the weights W in a RBM during training is given by: 
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∆𝑊 =  𝜖(⟨𝑣ℎ் ⟩ௗ௧  −  ⟨𝑣ℎ் ⟩) [1] 
 
where, 𝜖 is the learning rate, ⟨𝑣ℎ் ⟩ௗ௧ is the expectation under the data distribution, and 
⟨𝑣ℎ் ⟩ is the expectation under the model distribution. Despite its widespread use, this 
approach has limitations, including the potential to get trapped in local maxima and a 
growing computational cost with larger datasets. 
 
The Mode-Assisted Quantum Restricted Boltzmann Machines (MA-QRBMs) introduce a 
pivotal divergence from traditional RBMs through the implementation of a technique known 
as ’mode hopping’. Traditional RBMs primarily rely on Contrastive Divergence (CD) for 
training, a process that approximates the gradient of the log-likelihood using Gibbs sampling. 
This conventional method, while effective, can encounter challenges such as getting trapped 
in local optima [30]. In contrast, MA- QRBMs utilize mode hopping, where the machine 
calculates the mode (ground state) of the RBM under a given configuration and then updates 
the weights according to this mode, rather than relying solely on data-driven samples. This is 
done periodically (for instance, 5 times every 100 steps in our experiments), allowing for a 
more stable and dynamic adjustment of weights. By leveraging the ground states directly for 
weight updates, MA-QRBMs offer a more robust approach, navigating the energy landscape 
of the RBM more effectively and overcoming the limitations of traditional MCMC methods. 
This results in enhanced training stability and efficiency, setting MA-QRBMs apart from their 
traditional counterparts. 
 
The theoretical foundation of mode hopping lies in its ability to combine standard gradient 
updates with an off-gradient direction derived from samples of the RBM’s ground state [30]. 
This method elegantly addresses the challenge of approximating the gradient, a task known 
to be notoriously difficult in RBM training [31]. By leveraging the ground state samples, mode 
hopping provides a more robust direction for weight updates, promoting faster training, 
enhanced stability, and reduced converged relative entropy (KL divergence). The 
mathematical formulation of this method is intricately linked to the probabilistic nature of 
RBMs, ensuring that the model not only learns efficiently but also captures the underlying 
distribution of the data more accurately. 
 
3.1. Mathematics of mode hopping 
 
Our approach to RBM training, termed Quantum Mode Training, represents a significant leap 
forward, integrating neuromorphic computing principles. The core of this technique lies in 
efficiently determining the RBM’s ground state by simulating quantum processes. This is 
achieved by sampling from the RBM’s ground state, facilitated through quantum annealing 
or quantum simulation techniques. Let’s consider the energy function of an RBM defined as, 
  

𝐸(𝑣, ℎ) =  −𝑎்𝑣 − 𝑏்ℎ − 𝑣்𝑊ℎ [2] 
 
where, 𝑣 and ℎ represent the visible and hidden layers, respectively, and 𝑎, 𝑏, and 𝑊 are the 
model parameters. 
 
The probability distribution of the RBM is given by the Boltzmann distribution: 
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𝑝(𝑣, ℎ) =
𝑒ିா(௩,)

𝑍
 [3] 

 
where, 𝑍 is the partition function. 
 
In mode hopping, the weight update rule incorporates the ground state samples, which can 
be represented as: 
 

∆𝑊 =  𝜖(⟨𝑣ℎ் ⟩ௗ௧  −  ⟨𝑣ℎ் ⟩ௗ) [4] 
 
where, 𝜖 is the learning rate, ⟨𝑣ℎ் ⟩ௗ௧ is the expectation under the data distribution, and 
⟨𝑣ℎ் ⟩ௗ is the expectation under the distribution of the ground state samples. The ground 
state samples of the RBM can be obtained using advanced sampling techniques like quantum 
annealing or other efficient algorithms, making the mode hopping approach more effective 
than traditional methods. 
 
The updated weights better reflect the underlying data distribution, leading to faster 
convergence, improved stability, and reduced relative entropy (KL divergence) between the 
model and the data distributions (Figure 1). 
 

 
Figure 1: Comparative analysis of RBM training methodologies with emphasis on stability through 
mode hopping. This composite figure evaluates two distinct RBM training approaches: Contrastive 
Divergence (CD) and Mode Training with Mode Hopping. The top panels display the evolution of the 
Kullback-Leibler (KL) Divergence over 20,000 iterations, contrasting CD (left) with Mode Training 
(right). The middle panels provide a logscale view of the KL Divergence, accentuating the divergence 
patterns and the stability of convergence during training. Notably, Mode Training incorporates ’Mode 
Hopping,’ which contributes to a more stable and reliable training process, as indicated by the smoother 
convergence trend. 



ISSN 2816-8089 
 
 
 

  
         97 
Int J Bioinfor Intell Comput, Vol 3, Issue 1, February 2024 
 
 
 
 

 
To efficiently implement the mode hopping concept inherent in this methodology, we utilize 
the Dynex platform, a state-of-the-art neuromorphic computing environment. Dynex excels 
in handling complex, non-linear computational tasks by emulating the neural structure of the 
human brain [32], thus enhancing the quantum mode training process. Central to our 
approach is the use of Dynex’s quantum QUBO (Quadratic Unconstrained Binary 
Optimization) solver. This solver harnesses the principles of quantum mechanics to adeptly 
navigate and sample from the complex optimization landscapes characteristic of RBMs, 
thereby identifying the ground state with remarkable efficiency and accuracy.  
 
The integration of the Dynex platform with our quantum mode training approach allows for 
a more rapid convergence of the RBM model. By leveraging the sophisticated capabilities of 
neuromorphic computing and the precision of quantum mechanics, we are able to accelerate 
the training process significantly. This combination not only enhances the speed of 
convergence but also ensures greater stability and accuracy in the training of RBMs, marking 
a substantial advancement in the field of unsupervised machine learning.  
 
Our method offers significant computational advantages, including increased training speed, 
improved stability, and reduced complexity in finding the ground state of RBMs. These 
advantages are underpinned by the integration of quantum computing and neuromorphic 
computing principles, marking a significant advancement in the field of unsupervised 
machine learning. The theoretical framework of our approach draws from the fields of 
quantum mechanics, optimization theory, and neural computation, presenting a novel 
convergence of these diverse yet interconnected domains. 
 
4. Experimentation and Results  
 
The experimental phase of our study was meticulously orchestrated to dissect the 
performance of contemporary training methodologies applied to Restricted Boltzmann 
Machines (RBMs). The esteemed MNIST dataset, an epitome of complexity with its plethora 
of handwritten digits, anchored our empirical analysis, offering a rich tapestry for evaluating 
the nuances of unsupervised learning models [33].  
 
In our quest for a holistic assessment, we engineered a series of experiments to scrutinize three 
distinctive RBM training paradigms: the venerable Contrastive Divergence (CD), the 
established Mode-assisted training, and our innovative Mode-assisted approach augmented 
by the Dynex platform’s quantum QUBO solver, hereinafter dubbed the ’Dynex Sampler’. To 
ensure an equitable analysis, these methodologies were consistently applied across numerous 
epochs, all the while maintaining a set of invariant hyperparameters. We anchored our 
experiment with a batch size of 8, reflecting standard practices in machine learning to balance 
computational load and learning stability.  
 
The architecture of our RBMs was meticulously calibrated, with the number of hidden units 
precisely pegged at 15% of the visible units. A steadfast learning rate of 0.1 permeated our 
training protocols, spanning across a timeline of 60 epochs. The CD steps were set at 𝑘 = 1, 
and a specific seed value of 10000 guaranteed the replicability of our results. Parameters 
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pivotal to the annealing schedule - sigm_a at 20 and sigm_b at -6 - and a p_max of 0.1 were 
fine-tuned to uphold uniformity in our experimental conditions.  
 
Our results were revelatory. The ’Dynex Sampler’ eclipsed the traditional Mode-assisted 
method, boasting a formidable 47% enhancement in performance metrics. This leap in efficacy 
was most pronounced in the average log-likelihood ratios, a stringent measure of model 
precision, where the ’Dynex Sampler’ exhibited an uncanny alignment to the true data 
distribution - a testament to its heightened predictive acumen.  
 
The comparison between the ’Dynex Sampler’ and established training methods unveiled its 
ability not just to expedite the learning process but to solidify the learning trajectory. This 
robustness, mirrored in the log-likelihood evaluations [34], undercores the ’Dynex Sampler’s’ 
proficiency in decoding the intricacies of data structures, delivering a representation of the 
distribution that is unparalleled in its accuracy (Figures 2,3). 
 

 
 
Figure 2: Comparison of RBM training methods. The graph demonstrates the average log-likelihood 
values across epochs for three different training methods. The ’CD’ method shows consistent 
improvement, the ’Mode’ method outperforms CD, and the ’Mode Dynex’ method exhibits the highest 
log-likelihood, indicating a superior fitting to the data distribution. 
 
However, before delving into the quantum-enhanced prowess of the ’Dynex Sampler’, it is 
imperative to acknowledge the solid mathematical foundation laid by mode-assisted training. 
The stability and consistency introduced by mode hopping are nothing short of impressive, 
providing a robust framework for RBMs to learn with remarkable precision. It is upon this 
foundation that the ’Dynex Sampler’ builds, employing quantum annealing to accelerate and 
refine this process, resulting in a synergistic fusion of classical robustness with quantum 
efficiency.  
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In essence, the integration of neuromorphic computing, as facilitated by the Dynex platform, 
into the fabric of RBM training has been nothing short of transformative. While the ’Dynex 
Sampler’ undeniably catalyzed the learning velocity and reinforced the stability of training, it 
is the underlying mode-assisted methodology that constitutes the bedrock of our approach.  
 

 
Figure 3: Visual comparison of digit reconstructions using different RBM training methods. The top 
row displays original digit images from the MNIST dataset. The middle and bottom rows illustrate the 
reconstructed images after training with the Contrastive Divergence (CD) method and the Mode 
Assisted method, respectively. Each column corresponds to a single digit’s reconstruction across the 
methods, showcasing the fidelity of reconstruction. The Mode Assisted method, which includes Mode 
Hopping, demonstrates a closer resemblance to the original images, indicating a more accurate capture 
of the data’s structural integrity compared to the CD method. 
 
In conclusion, the experimental findings do not merely highlight the transformative potential 
of the ’Dynex Sampler’ but also celebrate the underlying mathematical elegance of mode-
assisted training in unsupervised machine learning. While excelling over traditional methods 
in terms of speed, stability, and accuracy, the ’Dynex Sampler’ propounds a compelling 
narrative for its adoption in sophisticated computational undertakings, particularly in the 
realm of RBM optimization. This study not only corroborates the enhanced capabilities of the 
Dynex platform in enriching machine learning paradigms but also heralds a new epoch of 
innovation in neuromorphic computing, setting the stage for groundbreaking applications in 
data-centric disciplines. 
 
5. Discussion  
 
The integration of quantum mode training and neuromorphic computing on the Dynex 
platform within the sphere of unsupervised learning using Restricted Boltzmann Machines 
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(RBMs) signifies a substantial leap in machine learning. Nonetheless, this exploration into 
uncharted territories comes with its set of challenges and limitations, necessitating a candid 
and detailed discussion.  
 
Our use of the Dynex platform has shown promising results with the datasets employed. 
However, the scalability of this approach to larger, more intricate datasets remains an area for 
future exploration. RBMs, despite their effectiveness in modeling complex data patterns, have 
their own boundaries, particularly when it comes to handling vast datasets, a prevalent 
scenario in domains like bioinformatics or high-resolution image processing. Moreover, the 
adaptability of our results to other advanced neural network architectures [35], especially 
those with larger parameters, is yet to be explored. This aspect is critical as the machine 
learning landscape is continually evolving with newer models that might outperform RBMs 
in certain scenarios.  
 
Our methodology leans towards the neuromorphic and quantum computing paradigms, 
which might inadvertently overshadow other significant advancements in the broader field 
of artificial intelligence. While these technologies offer distinct computational advantages, 
they are not universally applicable, particularly in settings where traditional computing 
solutions are more viable and cost-effective.  
 
The study’s reliance on the Dynex platform introduces a certain degree of platform-specific 
bias. The world of neuromorphic computing is rich and varied, with each platform offering 
unique strengths. Furthermore, the accessibility and widespread adoption of such advanced 
computing platforms remain limited, which could pose a hurdle to their broader application 
in the machine learning community.  
 
Focused on RBMs, our study may not fully capture the potential of newer, more complex deep 
learning architectures in certain contexts. RBMs, primarily designed for unsupervised 
learning tasks, might not perform as efficiently in supervised [36] or semi-supervised learning 
[37] scenarios as other neural network models. This comparative limitation is important to 
consider, given the dynamic nature of advancements in neural network architectures. 
 
Addressing these challenges, future research should aim to expand the horizons of 
neuromorphic and quantum computing to encompass larger datasets and a diverse array of 
neural network models [38]. Delving into different neuromorphic hardware types and 
broadening the methodological scope to include a wider range of machine learning models is 
essential. Furthermore, making these advanced computational technologies more accessible 
and practical for mainstream machine learning applications is a crucial step forward.  
 
This study opens up new vistas in the application of neuromorphic computing and quantum 
mode training for enhancing RBM training, while simultaneously bringing to light the 
importance of a more multifaceted approach in computational models within AI. As we set 
new benchmarks in unsupervised learning, we are reminded of the balance that needs to be 
struck between innovation, practicality, and inclusivity in the ever-evolving landscape of 
machine learning. 
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