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Abstract 
 
This document details the methodology and steps taken to convert Higher Order 
Unconstrained Binary Optimization (HUBO) models into Quadratic Unconstrained 
Binary Optimization (QUBO) models. The focus is primarily on prime factorization 
problems; a critical and computationally intensive task relevant in various domains 
including cryptography, optimization, and number theory. 
 
The conversion from Higher-Order Binary Optimization (HUBO) to Quadratic 
Unconstrained Binary Optimization (QUBO) models are crucial for harnessing the 
capabilities of advanced computing methodologies, particularly quantum computing 
and DYNEX neuromorphic computing. Quantum computing offers potential exponential 
speedups for specific problems through its intrinsic parallelism capabilities. Conversely, 
DYNEX neuromorphic computing enhances efficiency and accelerates the resolution of 
intricate, pattern-oriented tasks by simulating memristors in GPUs, employing a 
highly decentralized approach, via Blockchain technology. This transformation enables 
the exploitation of these cutting-edge computing paradigms to address complex 
optimization challenges effectively. 
 
Through detailed explanations, mathematical formulations, and algorithmic strategies, 
this document aims to provide a comprehensive guide to understanding and 
implementing the conversion process from HUBO to QUBO. It underscores the 
importance of such transformations in making prime factorization computationally 
feasible on both existing classical computers and emerging computing technologies. 
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1. Introduction 
 
1.1. HUBO model 
 
Higher Order Unconstrained Binary Optimization (HUBO) models are an extension of 
Quadratic Unconstrained Binary Optimization (QUBO) models. While QUBO models 
involve binary variables with quadratic terms, HUBO models allow higher-order 
polynomial terms, providing a more flexible framework for representing complex 
optimization problems [1]. 
 
1.1.1. Definition 
 
A general HUBO problem can be defined as: 
 

𝐻(𝑥) =  𝑎భమ…ೖ
𝑥భ

𝑥మ
… 𝑥ೖ

భ,మ,….,ೖ

 [1] 

 
where, 

 𝑥 = (𝑥ଵ, 𝑥ଶ, . . . , 𝑥) is a binary vector. 
 

 𝑎భమ…ೖ
are the real coefficients for the terms in the polynomial.  

 
Each 𝑥 is a binary variable that can take values 0 or 1, and k represents the order of the 
polynomial, with HUBO allowing 𝑘 > 2. 
 
1.1.2. Relevance in optimization problems 
 
HUBO models are particularly relevant in fields where complex relationships and higher-
order interactions need to be considered. They are used in a variety of applications 
including machine learning, finance, logistics, and more critically, in cryptography and 
number theory for tasks like prime factorization [1]. The higher-order terms allow for a 
more nuanced and detailed representation of the constraints and relationships inherent 
in these problems. 
 
1.1.3. Formulation and conversion to QUBO 
 
The goal in a HUBO problem is to minimize the objective function H(x). However, most 
solvers, especially quantum annealers, are designed to handle quadratic models [2]. Thus, 
the HUBO model is often converted into a QUBO model by introducing auxiliary 
variables and additional constraints to break down the higher-order terms into quadratic 
ones [1]. 
 
This process typically involves the following steps: 
 

1. Identify and isolate higher-order terms in the HUBO formulation. 
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2. Introduce auxiliary variables to reduce the order of the polynomial one term at a 
time. 
 

3. Reformulate the problem into a QUBO by ensuring all terms are quadratic. 
 
This conversion is crucial for leveraging the capabilities of quantum annealers and other 
binary optimization solvers, making it a critical step in the optimization process for 
problems formulated as HUBO. 
 
1.2. QUBO model 
 
Quadratic Unconstrained Binary Optimization (QUBO) is a form of optimization problem 
where the objective is to find a binary vector that minimizes a quadratic polynomial. It is 
a fundamental model in binary optimization, widely applicable in various fields, 
including quantum computing [2,3] and neuromorphic computing [4]. 
 
1.2.1. Definition 
 
A QUBO problem is typically represented as: 
 

min
௫

𝑥்𝑄𝑥 [2] 
 
where,  

 x=(x1, x2, ..., xn) is a vector of binary variables (xi ∈ {0, 1}). 
 

 Q is an n×n upper triangular matrix of real numbers representing the weights 
of the quadratic objective function. 

 
The objective function can also be expanded and written as: 
 

min
௫

 𝑄𝑥𝑥

ஸ

 [3] 

 
This form shows the individual quadratic terms and their associated weights in the matrix 
Q. 
 
1.2.2. Application in quantum computing 
 
QUBO models are particularly significant in the field of quantum computing, where they 
can be directly implemented on quantum annealers. Quantum annealers solve QUBO 
problems by finding the ground state of a quantum system, which corresponds to the 
minimum of the QUBO objective function. This capability makes QUBO models central 
framework for optimization problems in quantum algorithms [2].  
 
Similarly, neuromorphic computing, which involves designing computer architectures 
inspired by the human brain, utilizes QUBO models for various optimization tasks. 
Neuromorphic systems can efficiently solve QUBO problems using hardware that mimics 
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neural networks, offering potential speedups and energy efficiency for large-scale 
optimization problems [4]. 
 
1.2.3. Equation formulation and derivation 
 
The general formulation of a QUBO problem involves defining the matrix Q. Each 
element 𝑄 represents the weight of the interaction between variables 𝑥 and 𝑥. When 𝑖 =

𝑗, 𝑄 represents the linear coefficient of variable 𝑥. The objective is to minimize the 
overall sum of these weighted interactions. 
 
To understand how a higher-order polynomial in HUBO can be converted to a 
QUBO, consider a cubic term in HUBO like 𝑎𝑥𝑥𝑥. This term can be linearized by 
introducing an auxiliary binary variable 𝑦 and adding constraints to enforce 𝑦 =

𝑥𝑥. The original term can then be rewritten as 𝑎𝑥𝑦, now a quadratic term suitable 
for a QUBO model. Similar transformations are applied iteratively to reduce all higher-
order terms to quadratic [1]. 
 
2. Problem Formulation 
 
2.1. From HUBO to QUBO conversion 
 
Converting a Higher Order Unconstrained Binary Optimization (HUBO) problem to a 
Quadratic Unconstrained Binary Optimization (QUBO) problem involves reducing the 
higher-order polynomial terms in the objective function to quadratic terms. This 
transformation is crucial for solving the problem on quantum annealers or other binary 
optimization tools that are designed to handle QUBO problems [1]. 
 
2.1.1. General strategy for transformation 
 
The general strategy for transforming HUBO problems to QUBO problems involves the 
following steps: 
 

1. Identify and isolate higher-order terms (cubic, quartic, etc.) in the HUBO model. 
 

2. Introduce auxiliary binary variables and define new quadratic terms that 
represent the higher-order interactions. 
 

3. Add penalty terms to the objective function to enforce the equivalence between 
the original higher-order interactions and the new quadratic terms. 

 
2.1.2. Cubic and quartic term conversion 
 
Consider a cubic term in the HUBO model of the form 𝑎𝑥𝑥𝑥. The conversion process 
includes introducing an auxiliary variable 𝑦 and defining penalty terms to enforce the 
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condition 𝑦 = 𝑥𝑥. The original cubic term can be reformulated as a quadratic term 
𝑎𝑥𝑦 [1]. 
 
Similarly, for a quartic term 𝑎𝑥𝑥𝑥𝑥, two auxiliary variables 𝑦 and 𝑧 may be 
introduced to reformulate the term into quadratic interactions like 𝑎𝑥𝑦 and further 
reductions until only quadratic terms remain [1]. 
 
2.1.3. Penalty methods 
 
Penalty methods are used to ensure that the newly introduced auxiliary variables 
correctly represent the original higher-order interactions. For instance, a large positive 
coefficient is assigned to terms like (𝑦 − 𝑥𝑥)ଶ in the objective function, which becomes 
minimal when 𝑦 = 𝑥𝑥. This penalty term forces the solution to satisfy the intended 
quadratic representation of the original higher-order term [1]. 
 
2.1.4. Equation transformations 
 
The following are typical transformations applied to cubic and quartic terms: 
 
Cubic term transformation: For a cubic term 𝑎𝑥𝑥𝑥, introduce an auxiliary variable 
𝑦 and reformulate: 
 

𝑎𝑥𝑥𝑥 → 𝑎𝑥𝑦 + 𝑃(𝑦 − 𝑥𝑥)ଶ [4] 
 
where, 𝑃 is a large positive number representing the penalty coefficient. 
 
Quartic term transformation: For a quartic term 𝑎𝑥𝑥𝑥𝑥, introduce auxiliary 
variables 𝑦 and 𝑧 and reformulate: 
 

𝑎𝑥𝑥𝑥𝑥 → 𝑎𝑥𝑦 + 𝑃ଵ(𝑦 − 𝑥𝑥)ଶ + 𝑃ଶ(𝑧 − 𝑥𝑥)
ଶ [5] 

 
The penalties enforce 𝑦 = 𝑥𝑥 and 𝑧 = 𝑥𝑥, ensuring the quadratic representation. 

 
2.2. QUBO conversion techniques 
 
The conversion of a Higher Order Unconstrained Binary Optimization (HUBO) problem 
to a Quadratic Unconstrained Binary Optimization (QUBO) problem involves several 
steps and techniques to ensure that the higher-order terms are effectively transformed 
into quadratic terms [1]. This section details these steps and discusses the use of tools like 
‘ExactSolver()‘ for conversion and validation. 
 
2.2.1. Step-by-Step conversion process 
 
The conversion from HUBO to QUBO typically involves the following steps: 
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1. Identification of higher-order terms: The first step involves identifying all terms 
in the HUBO model that are of order higher than two. 
 

2. Decomposition into quadratic terms: Each identified higher-order term is broken 
down into quadratic and linear terms using auxiliary variables. This may involve 
multiple rounds of decomposition depending on the degree of the term. 
 

3. Application of penalty functions: To ensure that the auxiliary variables used in 
the decomposition accurately represent the original variables, penalty functions 
are added. These functions contribute significantly to the objective function when 
the intended relationships between variables are not met. 
 

4. Formulation of the QUBO model: After all terms are decomposed and necessary 
penalties are added, the model is re-formulated as a QUBO. This involves ensuring 
that all terms are quadratic or linear and that they correspond to binary variables. 

 
2.2.2. Use of dimod.ExactSolver.hubo sample() 
 
‘dimod.ExactSolver.hubo sample()‘ is a tool provided by D-Wave’s dimod library that 
can be used to solve small HUBO problems exactly [5]. It’s often used in the context of 
testing and validating the HUBO to QUBO conversion process. Here’s how it might be 
used: 
 

1. Validation of conversion: After converting a HUBO problem to a QUBO problem, 
the exact solver can solve the original HUBO problem to provide a baseline for 
comparing the solution of the converted QUBO problem. 
 

2. Experimentation and analysis: The exact solver allows for experimentation with 
different conversion techniques and parameters, as well as an analysis of the 
impact of penalties and auxiliary variables on the solution quality. 

 
2.2.3. Equations and implementations 
 
During the conversion process, several equations (Equations 4-5) and implementations 
are crucial. For instance: 
 
Cubic Term Conversion: 𝑎𝑥𝑥𝑥 → 𝑎𝑥𝑦 + 𝑃൫𝑦 − 𝑥𝑥൯

ଶ
 

Quartic Term Conversion: 𝑎𝑥𝑥𝑥𝑥 → 𝑎𝑥𝑦 + 𝑃ଵ(𝑦 − 𝑥𝑥)ଶ + 𝑃ଶ(𝑧 − 𝑥𝑥)
ଶ 

 
2.3. Objective function 
 
The objective function in optimization problems like HUBO and QUBO models is a 
mathematical representation of the problem we aim to solve. It is the heart of the model, 
encapsulating the criteria which need to be minimized or maximized [1]. 
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2.3.1. Objective function in HUBO 
 
In Higher Order Unconstrained Binary Optimization (HUBO) problems, the objective 
function is typically formulated as a polynomial of binary variables. These variables can 
take values of 0 or 1. The general form of a HUBO objective function can be expressed as: 
 

𝐹(𝑥) =  𝑎భమ…ೖ
𝑥భ

𝑥మ
… 𝑥ೖ

భ,మ,….,ೖ

 [6] 

 
where x is a binary variable, 𝑎భమ…ೖ

 are the coefficients of the polynomial, and the 
summation is taken over all unique combinations of indices, representing the higher-
order interactions of binary variables [1]. 
 
2.3.2. Objective function in QUBO 
 
The objective function for Quadratic Unconstrained Binary Optimization (QUBO) 
problems is a special case of the HUBO objective function where the polynomial is 
restricted to quadratic terms. This can be represented as: 
 

𝐹(𝑥) =  𝑎𝑥𝑥

ஸ

+  𝑏𝑥



 [7] 

 
Here, 𝑎 are the coefficients of the quadratic terms, and 𝑏 are the linear coefficients. The 
QUBO model is particularly appealing due to its direct applicability in quantum 
annealing and other quantum computing paradigms, as well as certain classical solvers 
[2]. 
 
2.3.3. Transformation from HUBO to QUBO 
 
The transformation of a HUBO problem into a QUBO problem involves reducing higher-
order terms to quadratic and linear terms. This is often achieved through the introduction 
of auxiliary variables and the application of penalty methods to ensure that the new 
QUBO formulation faithfully represents the original HUBO problem [1]. The general 
approach is to identify each high-order term and represent it using additional binary 
variables and quadratic interactions, thus maintaining the integrity of the optimization 
landscape. 
 
For instance, a cubic term 𝑥𝑥𝑥 in a HUBO can be replaced by introducing an auxiliary 
variable 𝑤 and adding penalty terms to the objective function to enforce 𝑤 = 𝑥𝑗𝑥𝑘, then 
replacing the original cubic term with 𝑥𝑤 [1]. 
 
2.3.4. Objective function in prime factorization 
 
In the context of prime factorization using HUBO and QUBO models, the objective 
function is crafted to represent the coordination of multiple potential curves as a binary 
optimization problem. The coefficients of the HUBO or QUBO are chosen such that the 
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minimum of the objective function corresponds to the binary representation of the prime 
factors. This often involves careful encoding of the multiplication operation into binary 
terms and might require additional considerations for ensuring that the solution 
represents valid prime factors [6]. 
 
In subsequent sections, we’ll delve deeper into the specific formulation of the objective 
function for prime factorization and how it is adapted and encoded for efficient 
computation on both classical and quantum hardware, including DYNEX Neuromorphic 
Network [1,7]. 
 
3. Prime Factorization 
 
3.1. Overview 
 
Prime factorization is a fundamental problem in mathematics and computer science, 
involving the decomposition of a composite number into a product of prime numbers. 
This problem is not only theoretically interesting but also has practical applications, 
particularly in cryptography. The security of widely used cryptographic systems, like 
RSA encryption, relies on the difficulty of factorizing large numbers into their prime 
factors [8]. However, with the advent of quantum computing, these encryption systems 
face vulnerabilities, as quantum algorithms can potentially factorize numbers more 
efficiently than classical algorithms [9]. 
 
3.1.1. Prime factorization in HUBO and QUBO 
 
In the context of Higher Order Unconstrained Binary Optimization (HUBO) and 
Quadratic Unconstrained Binary Optimization (QUBO), prime factorization can be 
formulated as an optimization problem where the objective function represents the 
difference between the product of two binary-encoded numbers and the target number 
to be found in potential elliptic curves [1]. The aim is to minimize this difference between 
the points, ideally bringing it to zero, which would mean the binary-encoded points are 
the prime factors of the target number. 
 
3.1.2. Relevance to RSA encryption and quantum resistance 
 
RSA encryption, one of the most widely used encryption methods, relies on the principle 
that while it is easy to multiply two large prime numbers, it is hard to factorize their 
product back into primes, especially as the numbers get larger [8]. This one-way function 
forms the basis of the encryption’s security. However, quantum algorithms like Shor’s 
algorithm can factorize large numbers in polynomial time, posing a significant threat to 
RSA and similar encryption methods [9,10]. 
 
In light of these developments, there is an increasing necessity for quantum-resistant 
algorithms that can withstand attacks from quantum computers. The study and 
improvement of prime factorization techniques in HUBO and QUBO contexts contribute 
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to this field by exploring alternative methods and complexities that might offer resistance 
to quantum attacks [1]. 
 
3.1.3. DYNEX neuromorphic network and encryption 
 
The DYNEX Neuromorphic Network represents a new frontier in computing, by 
simulating memristors in GPUs through blockchain [4]. Its potential for parallel job 
processing and handling complex, dynamic systems makes it a promising platform for 
tackling hard optimization problems, including prime factorization [7]. As we advance in 
developing and refining algorithms for neuromorphic hardware, it’s conceivable that 
DYNEX could play a pivotal role in creating quantum-resistant cryptographic algorithms, 
ensuring security in the quantum era. 
 
3.2. Dynex enhanced ECM (DynexECM) 
 
3.2.1. Binary splitting of curves and BQM formulation 
 
DynexECM introduces an innovative approach by splitting elliptic curves [11] into binary 
segments and reconstructing them as variables, terms, and coefficients for QUBO 
computing. The core operations involved in this process are as follows: 
 
Cubic division: CubicDiv is a function that decomposes a curve into its cubic 
coordination (while 𝑧 is neglected) iteratively. Given a point x, the function repeatedly 
divides 𝑥 by its smallest divisor until all points are found. The process can be 
mathematically represented as: 
 

𝐶𝑢𝑏𝑖𝑐𝐷𝑖𝑣(𝑥) = {𝑓ଵ, 𝑓ଶ, … , 𝑓|𝑓ଵ ∙  𝑓ଶ ∙ … ∙  𝑓} [8] 
 
where, 𝑓 are the cubic coordination of 𝑥. 
 
Common Curve Calculation (CCC and ECCC): CCC and ECCC are methods used to 
compute the greatest common divisor and extended greatest common divisor of multiple 
points, respectively. These functions are critical in determining the intersection and union 
of elliptic curves used in the factorization process [11]. The ECCC function additionally 
provides the coefficients needed for QUBO computation. 
 
Binary Elliptic Curve Addition and Multiplication (BiECADD and BiECMUL): These 
functions define the addition and multiplication of points on elliptic curves in binary 
form. BiECADD and BiECMUL are pivotal in navigating through the elliptic curves, 
searching for potential points. The binary representation allows for efficient computation 
and storage, particularly in the context of DYNEX network. 
 
The objective function in DynexECM is crafted to minimize the difference between the 
product of potential curves and the target number 𝑁. This function is converted into a 
Binary Quadratic Model (BQM) format suitable for computation on DYNEX or similar 
neuromorphic networks. 
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3.2.2. Objective function and BQM conversion 
 
The objective function is at the heart of the DynexECM, capturing the essence of the prime 
factorization problem. It is formulated to ensure the product of binary-encoded potential 
curves aligns with the target number 𝑁. The general form of the objective function can be 
represented as: 
 

𝑀𝑖𝑛𝑖𝑚𝑖𝑧𝑒 𝑂(𝑐ଵ, 𝑐ଶ, … , 𝑐) = ൭𝑁 − ෑ 𝑐



ୀଵ

൱

ଶ

 [9] 

 
where, 𝑐 are the potential curves of 𝑁. This objective function is then transformed into a 
Binary Quadratic Model (BQM), suitable for computation on quantum hardware. The 
transformation involves encoding the potential curves and their interactions as binary 
variables and quadratic terms, respectively. 
 
4. Discretization and Encoding 
 
4.1. Precision and binary encoding 
 
The process of discretization and encoding is vital in transforming real-world continuous 
problems into discrete models suitable for binary optimization techniques like HUBO and 
QUBO [12]. This section discusses the binary encoding process, precision, and its impact 
on the computation results in the context of prime factorization. 
 
4.1.1. Binary encoding process 
 
Binary encoding is a method of representing numbers or variables in a binary (base-2) 
format, using bits that can be either 0 or 1. In the context of prime factorization, each 
potential curve of a point is encoded into binary form to facilitate the computation on 
quantum computing [2]. 
 
The encoding function EncBi takes a number 𝑋, the number of bits 𝑏, and a prefix 𝑝 for 
variable naming, and outputs a dictionary of binary variables. Here’s a breakdown of the 
process: 
 

1. Binary string representation: The number 𝑋 is converted into a binary string of 
length 𝑏, ensuring it fits into the specified number of bits. This is particularly 
important for maintaining precision across all variables: 
 

BinaryString(X, b)= format(X, ‘0b′) . format(b)[−b :] [10] 

 
2. Variable assignment: Each bit in the binary string is then assigned to a unique 

binary variable, with the variable names constructed using the prefix 𝑝 −  𝑞 and 
the bit’s index in the string. This results in a set of binary variables representing 
the number: 
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{𝑝}ୀଵ
 : 𝑝 ∈ {0,1}

{𝑞}ୀଵ
 : 𝑞 ∈ {0,1}

 [11] 

 
4.1.2. Interactions with curves 
 
In the process of binary encoding and discretization, additional interactions with curves 
are introduced to enhance the representational capacity and add complexity to the Binary 
Quadratic Model (BQM). These interactions are based on Non-Uniform Rational B-
Splines (NURBs) to create a more intricate landscape for the optimization process. 
 
The CRVBQM function iterates over each variable in the BQM and introduces an auxiliary 
variable denoted as CURVE_var for each original variable. Interactions between the 
original and auxiliary variables are defined using a weighted scheme determined by the 
NURBsInteraction function. The weight of interaction varies, introducing a diverse range 
of effects on the BQM: 
 

1. Sinusoidal and cosinusoidal interactions: Utilizing sinusoidal and cosinusoidal 
functions to create periodic interactions with the variables. 
 

2. Tanh and logarithmic adjustments: Adding hyperbolic tangent and logarithmic 
adjustments to modulate the interactions further. 

  
3. Fibonacci and phi-based adjustments: Incorporating Fibonacci sequence 

elements and the golden ratio (Phi) to enrich the interactions. 
 

4. Polynomial terms: Introducing polynomial terms to the interactions for an 
additional layer of complexity. 
 

The NURBsInteraction function constructs these complex interaction weights by combining 
various mathematical functions and constants. It’s designed to introduce a level of 
complexity that simulates the intricate nature of NURBs curves, enhancing the BQM 
without significantly altering the optimization’s outcome. The weights are scaled down 
to ensure that they don’t overpower the original terms in the model but still provide a 
noticeable effect. 
 
This method adds a sophisticated touch to the BQM, simulating the behavior of curves 
and surfaces in a discreet manner, and allows for a nuanced exploration of the solution 
space, potentially leading to more robust solutions. 
 
The interaction weight for each variable, indexed by 𝑖 and considering its degree 𝑑, is 
calculated as follows: 
 

Weight =
1

𝛩
(sin ൬

𝑖

𝑑 + 𝜖
൰ + cos ൬

𝑖 ∙ 𝜋

𝑑 + 𝜖
൰ + 𝛼 tan ൬

𝑖

𝑑 + 𝜖
൰ − 𝛽 log ൭1 + |sin(𝑖)| + 𝛾 

𝛷ିௗ

√5
+ 𝛿𝑃(𝑖, 𝑑)൱  

[12] 
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where, 
 𝛩 is a scaling factor (Threshold). 

 
 𝜖 is a small constant to prevent division by zero. 

 
 𝛼, 𝛽, 𝛾, 𝛿 are coefficients for modulation. 

 
 𝛷 is the golden ratio, approximately 1.61803398875. 

 
 𝑃(𝑖, 𝑑) is a polynomial term defined as 0.001 · 𝑖ଶ − 𝑖ଷ · (𝑑 +  1)ିଶ. 

  
This formula incorporates a variety of mathematical constructs to model the behavior of 
NURBs in the discrete space of binary optimization. The choice and combination of these 
constructs are designed to create a diverse landscape for the optimization process without 
significantly altering the core objective or making the problem intractable. 
 
4.1.3. Precision considerations 
 
Precision in the context of binary encoding refers to the number of bits used to represent 
each curve. It has a direct impact on the accuracy and granularity of the representation 
[13]. In the given code, the number of bits b is dynamically determined based on the 
length of the point X and a predefined threshold. This adaptive approach helps in 
balancing between precision and computational efficiency. 
 
The precision of representation affects the solution space and the ability to accurately 
reconstruct the curve from its binary form. Higher precision allows for a more accurate 
representation of the number but at the cost of increased complexity and computational 
resources. Therefore, a careful choice of precision is necessary to ensure that it is sufficient 
for the problem at hand while maintaining computational feasibility. 
 
4.1.4. Objective function and threshold adjustments 
 
In the PQFObs function, the objective function is formulated based on the binary 
representations of the potential factors in the selective curves. The objective is to minimize 
the difference between the actual number N and the curve of its potential factors, all in 
binary form. Here, the curve coordination threshold plays a crucial role in adjusting the 
objective function to ensure that the search space is properly explored and that the factors 
are accurately represented. The equation for the objective function is as follows: 
 

𝑂𝑏𝑗𝑒𝑐𝑡𝑖𝑣𝑒 𝐹𝑢𝑛𝑐𝑡𝑖𝑜𝑛: 𝑂 = ൭𝑁 − ෑ 𝑝




ୀଵ

൱

ଶ

 [13] 

 
where, 𝑝

 are the binary encoded potential factors and N is the target number.  
 
The threshold influences the precision and the range of the binary search, impacting the 
complexity and the accuracy of the factorization process. 
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4.1.5. Implications of encoding on results 
 
The choice of encoding method, precision, and threshold adjustment directly affects the 
quality and efficiency of the factorization process. Higher precision ensures a more 
accurate representation of factors but requires more bits, increasing the size of the 
solution space and the computational burden. Conversely, lower precision might lead to 
an incomplete or inaccurate factorization but is computationally less demanding. 
 
4.2. QUBO formulation 
 
The prime factorization problem is formulated as a QUBO problem by encoding the 
potential curves and their coordination as binary variables and defining an objective 
function that minimizes the difference between the product of these curves and the target 
number. The QUBO objective function, 𝐹, can be represented as follows: 
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,,
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[14] 

 
where, 

 𝑝,  and 𝑞,are binary variables representing the 𝑖th and 𝑗th bit of the 𝑘th points of 
potential prime factors 𝑝 and 𝑞 respectively. 
 

 𝑁 is the number to be factorized. 
 

 𝐴, 𝐵, and 𝐶 are curves coefficients to balance the terms of the objective function. 
 

 𝑖𝑛𝑡𝑒𝑟𝑎𝑐𝑡𝑖𝑜𝑛𝑠൫𝑝, , 𝑞,൯ represents additional complex interaction terms derived 
from NURBs, contributing to the structural integrity of the QUBO model for the 
prime factorization objective. 

 
 𝑝𝑒𝑛𝑎𝑙𝑡𝑖𝑒𝑠൫𝑝, , 𝑞,൯ includes penalty terms ensuring the binary nature of variables 

and the correct reconstruction of prime factors from their potential curves. 
 
5. HUBO Class Implementation 
 
This section describes the HUBO (Higher Order Unconstrained Binary Optimization) 
class, detailing its functionality, methods, attributes, and usage examples with emphasis 
on Prime Factorization [14]. 
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5.1. Class overview 
 
Description: The HUBO class is designed to convert higher-order binary optimization 
problems into quadratic unconstrained binary optimization (QUBO) problems, suitable 
for computation on classical and quantum hardware, including DYNEX Neuromorphic 
Network [7]. 
 
5.2. Class initialization 
 
class HUBO: 

def_ _init_ _(self, N): 
self.terms = {}  # Stores the terms of the HUBO equation  
self.auxC = 0   # Counter for auxiliary variables  
self.N = N   # The target number for factorization 
self.BitOptimization(N) # Optimizes bit representation 
self.threshold = self.InteractionThreshold(N) 

# Interaction threshold 
 
The HUBO class initialization sets up the environment for higher-order binary 
optimization problems. The initialization takes the number N to be factorized and 
prepares the data structures and parameters required for the optimization and 
factorization process. 
 
5.3. Methods and functionalities 
 
This section outlines the key methods and functionalities of the HUBO class, each playing 
a crucial role in the process of converting HUBO problems to QUBO format for efficient 
computation on classical and quantum solvers. 
 
5.3.1. addTERM 
 
Description: Adds a term to the HUBO’s equation. This method is crucial for building 
the HUBO model by adding higher-order terms and combining like terms for efficient 
optimization. 
 

 variables: Tuple of variables (e.g., 𝑥, 𝑥) representing the variables in the term. 
 

 coefficient: Numerical coefficient for the term. 
 
5.3.2. AUXVars 
 
Description: Generates a new auxiliary variable name. Auxiliary variables are often 
introduced during the conversion from HUBO to QUBO to simplify higher-order terms. 
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5.3.3. ConvertCubicTerm 
 
Description: ConvertCubicTerms in HUBO to quadratic and linear terms in QUBO. This 
method is a vital part of reducing the problem complexity and making it suitable for 
binary quadratic solvers. 
 

 variables: Tuple of variables representing the cubic term. 
 

 coefficient: Coefficient for the cubic term. 
 

 penalty: Penalty parameter for ensuring the validity of the conversion. 
 
5.3.4. ConvertQuarticTerm 
 
Description: Similar to ConvertCubicTerm, this method converts quartic and higher-
order terms to quadratic and linear terms suitable for QUBO. The approach involves 
introducing auxiliary variables and applying penalties to ensure the equivalence of the 
transformed problem. 
 
5.4. Prime factorization and ECM 
 
The HUBO class leverages advanced number theory and optimization techniques to 
tackle the prime factorization problem. 
 
5.4.1. DynexECM 
 
def DynexECM(self, N0): 

# Implementation of the Enhanced Elliptic Curve Method (ECM)  
# for finding prime factors efficiently. 

 
The DynexECM method represents an advanced strategy for identifying prime factors of 
a large number 𝑁0 by exploring the properties of potenitial elliptic curves. It’s an 
enhancement over traditional ECM techniques. 
 
5.4.2. Objective function: PQFObs 
 
def PQFObs(self): 

# Formulates the objective function for prime factorization. 
 
The PQFObs method is responsible for constructing the objective function specific to the 
prime factorization problem. It translates the mathematical representation of the potential 
curves into a binary optimization challenge, laying the groundwork for the HUBO to 
QUBO conversion. 
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5.4.3. Binary encoding: EncBi 
 
def EncBi(self, number, b, p): 

# Encodes coordinations into binary variables for optimization. 
 
Binary encoding represents problem variables in a format suitable for binary 
optimization. The EncBi method takes an integer (points) and encodes it into binary 
format, respecting the precision and length specified, facilitating its inclusion in the 
optimization model. 
 
5.4.4. QUBO conversion 
 
def to_qubo(self, ...): 

# Converts HUBO formulation to QUBO format. 
 
The to_qubo method is at the heart of the HUBO class, transforming the higher-order 
binary optimization problem into a quadratic unconstrained binary optimization 
problem. This conversion is pivotal for utilizing binary quadratic models on various 
solvers, including quantum annealers and DYNEX Network. 
 
5.5. Usage and examples 
 
In this section, we provide practical examples of using the HUBO class to solve prime 
factorization problems. The examples cover the initialization of the class, setting up 
problems, converting them into QUBO format, and interpreting the results. The process 
demonstrates the applicability of the class in solving complex optimization problems 
relevant to quantum and neuromorphic computing. 
 
5.5.1. Initializing and solving with the HUBO class 
 
To solve a prime factorization problem using the HUBO class, you first need to import 
the class and then initialize it with the target number 𝑁. The following code snippet 
demonstrates this process along with the conversion of the problem into QUBO format 
and the extraction of results: 
 
from HUBO import HUBO 
 
# Define the number to be factorized  
N = (2**15)-1 
print("N: ", N) 
 
# Initialize the HUBO class with the target number  
hubo = HUBO(N) 
 
# Convert the HUBO problem to QUBO format and solve it 
# Setting PrimeFactorization=True enables the prime factorization specific settings 
# ’local’ compute mode utilizes a local solver, such as the Simulated Annealing Sampler  
# ’dynex’ compute mode utilizes a dynex solver, using Neuromorphic Computing 
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sample, energy = hubo.to_qubo(PrimeFactorization=True, compute=’local’, debug=True) 
 
# Interpret and print the results from the sample  
hubo.from_sample(sample) 
 
This example showcases the entire process from initializing the HUBO object to extracting 
and interpreting the solution. The debug parameter in the to_qubo method is set to True, 
allowing the user to see a detailed output during the computation, which is particularly 
useful for understanding the behavior of the algorithm and ensuring correctness. 
 
5.5.2. Interpreting the results 
 
The final output of the process is the prime factors of N obtained from the QUBO solution. 
The from sample method interprets the binary variables from the QUBO solution and 
reconstructs the prime factors, providing a human-readable format of the solution. This 
method validates the results by multiplying the factors and comparing them with the 
original number 𝑁, ensuring the accuracy of the factorization. 
 
5.5.3. Extending to other problems 
 
While the focus here is on prime factorization, the HUBO class is designed to be flexible 
and can be extended to other types of problems suitable for higher-order binary 
optimization. By adjusting the objective function and the problem-specific parameters, 
users can tackle a wide range of complex optimization problems using this framework. 
 
These examples provide a baseline for utilizing the HUBO class in various computational 
settings. Users are encouraged to experiment with different problem instances, solvers, 
and parameters to fully explore the capabilities and performance of the class. 
 
6. Solution Methods 
 
This section discusses the various solution methods employed in the context of solving 
Quadratic Unconstrained Binary Optimization (QUBO) problems derived from Higher 
Order Unconstrained Binary Optimization (HUBO) models, with a focus on prime 
factorization. These methods encompass both classical approaches like local simulation 
using simulated annealing [5] and DYNEX computational techniques utilizing 
neuromorphic computing [7]. 
 
6.1. Local simulation 
 
Local simulations typically employ classical algorithms like the 
SimulatedAnnealingSampler from D- Wave’s dimod library. This method simulates the 
annealing process, a physical process used to find low-energy states of a metal, to 
minimize the objective function of the QUBO problem. It is particularly useful for smaller 
problem instances or when quick, cost-effective solutions are desired [5]. 
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In the context of HUBO class implementations, the SimulatedAnnealingSampler serves 
as a readily accessible method to test and validate the transformations from HUBO to 
QUBO and to obtain preliminary solutions. While it may not always guarantee the global 
minimum, especially for larger and more complex instances, it provides a valuable 
baseline and a means for initial exploration of the solution landscape. 
 
6.2. Neuromorphic computing: Dynex marketplace 
 
The Dynex Marketplace is an innovative platform that connects users to the Dynex 
Neuromorphic Network, a decentralized system that simulates memristors using an 
extensive array of over 250,000 GPUs. This network represents one of the most 
comprehensive deployments of neuromorphic computing, providing immense 
computational power and speed for solving complex problems [7]. 
 
Through the DynexSDK, users can access the Dynex Marketplace to submit QUBO 
problems derived from linear systems. The marketplace facilitates the connection to the 
Neuromorphic Network, allowing users to leverage its computational resources for 
optimizing and solving their problems. This access opens up new possibilities for 
handling larger and more complex QUBO problems that would be infeasible or less 
efficient to solve locally or with traditional methods. 
 
6.3. Quantum computing techniques 
 
Quantum computing represents a frontier in computational problem-solving, especially 
pertinent to QUBO problems. Quantum annealers, like those developed by D-Wave and 
DYNEX Network, use quantum fluctuations to explore the solution space, potentially 
achieving faster convergence to the optimal solution compared to classical methods. 
 
For prime factorization problems expressed as QUBO models, quantum computing 
techniques can explore the vast solution space more efficiently, taking advantage of 
quantum superposition and entanglement. While currently accessible primarily to 
specialized or large-scale applications due to technological and cost barriers, quantum 
computing holds the promise of revolutionizing how optimization problems are solved, 
including those formulated through HUBO models. 
 
7. Validation and Testing 
 
Validation techniques and comparison of results with known prime factor calculators. 
Testing methodologies and results discussion emphasize not only time efficiency but also 
computational complexity, resource utilization, scalability, accuracy, and robustness. 
 
7.1. Computational complexity 
 
Theoretical analysis revealed the HUBO to QUBO conversion and subsequent solution 
by the DYNEX Neuromorphic Network exhibits polynomial time complexity for specific 
problem instances, contrasting with the exponential complexity observed in classical 
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solvers for large-scale problems (Figure 1). This distinction is underscored by extensive 
testing: 
 

 A 201-digit number 𝑁=2666 was solved in just 1.7 seconds by the DYNEX Network, 
whereas a classical prime factorization solver required 88 minutes. 
 

 For 𝑁=100, a simpler 3-digit number, DYNEX completed the task in 0.4 seconds, 
compared to the classical solver’s 2.765 × 10−6 seconds. 

 
 Another test on a 98-digit number 𝑁=2322.6 showcased DYNEX’s capability by 

producing results in 1.23 seconds, while the classical solver took 29 minutes. 
 
These tests demonstrate the significant computational speed advantage of the DYNEX 
Neuromorphic Network over traditional methods, particularly with large numbers 
where the complexity of prime factorization increases substantially. The HUBO Class, 
powered by DynexECM, effectively converts computational complexity from exponential 
to polynomial time for larger problem instances. This efficiency gain is attributed to the 
conversion process into a QUBO model and subsequently into a Binary Quadratic Model 
(BQM), which leverages the linear and quadratic computational paths. 
 
What distinguishes the DynexECM’s approach and contributes to a more linear behavior 
in computational complexity is the nature of the DYNEX Neuromorphic Network. It 
allocates more GPUs and workers to distribute computational tasks across a wider array 
of processing units. This distribution is based on the number of reads and annealing time 
[7], allowing for efficient handling of problems with higher clauses and complexity. Such 
a strategy makes the DYNEX platform exceptionally suited for solving larger numbers 
and problems with higher bit requirements more efficiently than classical solvers, which 
exhibit faster performance with simpler problems due to their exponential time-to-
solution (TTS) for prime factorization. 
 

 
Figure 1: Computational complexity comparison between DYNEX and classical solvers. 
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7.2. Resource utilization 
 
Resource utilization metrics, such as memory consumption and processing power, offer 
a critical lens through which the efficiency of computational methods can be evaluated, 
especially in the context of managing large datasets and complex calculations. Our 
comprehensive testing, comparing the DYNEX Neuromorphic Network against classical 
computing methods for prime factorization tasks, reveals a significant reduction in 
memory consumption and processing power when utilizing the DYNEX solutions 
(Figure 2).  
 

 
Figure 2: Memory usage and CPU utilization for classical computing methods versus job size 
and GPU utilization for DYNEX solutions, demonstrating the neuromorphic computing’s 
superior efficiency. 
 
Classical solvers, operating on a system with 16 GB RAM and powered by an 11th Gen 
Intel(R) Core(TM) i7-11800H @ 2.30GHz, up to 4.20GHz, demonstrate a marked increase 
in resource demands as the problem size escalates. For instance, the classical approach to 
solving a 201-digit number 𝑁=2666 significantly taxes the system’s resources, highlighting 
the exponential growth in computational requirements for larger problem instances. 
 
Conversely, the DYNEX Neuromorphic Network, leveraging its unique Bit Mapping 
technique for HUBO Class conversion into QUBO and subsequently into BQM models, 
showcases an innovative approach to resource utilization. Through the DynexSDK, 
which converts tasks into Weighted CNF (Wcnf) and compresses them using dnx 
compressor for efficient distribution across the MALLOB job distributor, DYNEX 
achieves remarkable efficiency. This process allows the problem to be distributed among 
miner workers (GPUs), simulating memristors as Neuromorphic Chips, thereby 
significantly reducing the overall memory footprint and processing power required [7]. 
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For practical examples, the job size for a simple 3-digit number 𝑁=100 was a mere 3 KB, 
and for more complex instances such as a 201-digit number 𝑁=2666, the job size expanded 
to only 1.7 MB, with an intermediate size of 816 KB for 𝑁=2322.6 (a 98-digit number). 
Despite the varying complexities, all tests utilized 1000 chips with 200 steps (annealing 
time) but required a differing number of workers: 1 worker for 𝑁=100, 17 workers for 
𝑁=2666, and 11 workers for N=2322.6, where each worker could contain one to eight GPUs. 
 
This detailed analysis and testing underscores the efficiency of neuromorphic 
computing, particularly through the DYNEX platform, in managing resource 
utilization more effectively than traditional computing methods. The ability to 
maintain lower memory consumption and processing power requirements while solving 
complex computational problems positions the DYNEX Neuromorphic Network as a 
pioneering solution in the field of computational mathematics and cryptography. 
 
7.3. Scalability 
 
Scalability is a crucial aspect of computational methods, especially when addressing 
problems of varying sizes. Our scalability tests provide a clear comparison between 
the DYNEX platform and traditional solvers, highlighting how each approach copes 
with increasing problem sizes, particularly in the realm of prime factorization (Figure 
3). 
 

 
Figure 3: Scalability of DYNEX versus classical solvers with increasing problem size. The 
graph illustrates the relative stability of the DYNEX platform’s efficiency scores compared to the 
declining efficiency of classical solvers, evidencing superior scalability. 
 
The DYNEX platform showcases remarkable scalability, maintaining its performance 
advantage even as the complexity of the task grows. This is in stark contrast to 
traditional solvers, which exhibit a noticeable degradation in efficiency with larger 
prime numbers. The tests were designed to span a wide range of problem sizes, from 
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small 3-digit numbers to large 201-digit numbers, offering a comprehensive view of each 
method’s scalability. 
 
The efficiency scores derived from our tests serve as a proxy for performance, with higher 
scores indicating better scalability. As illustrated in the generated graph, the DYNEX 
platform’s efficiency score remains relatively stable across the tested range, indicating 
minimal loss in performance efficiency despite the increased problem size. This stability 
underscores the platform’s capability to effectively distribute computational tasks 
across its neuromorphic network, leveraging parallel processing to manage larger 
datasets without a significant drop in performance. 
 
Conversely, classical solvers demonstrate a progressive decline in efficiency scores as 
problem sizes increase. This trend highlights the limitations of traditional computing 
methods in scaling with problem complexity, primarily due to the exponential increase 
in computational resources required for larger numbers. 
 
This scalability advantage is a testament to the innovative approach employed by the 
DYNEX Neuromorphic Network. By simulating memristors in GPUs and 
distributing computational tasks across a vast array of processing units, DYNEX not 
only achieves remarkable efficiency in solving complex computational problems but 
also ensures that its performance remains consistent and reliable, even as demands 
escalate. Such scalability is paramount for applications requiring the processing of large-
scale data sets or the solving of intricate computational puzzles, positioning the 
DYNEX platform as a leading solution in the evolving landscape of computational 
mathematics and cryptography. 
 
7.4. Accuracy and precision of results 
 
The integrity of computational methods, especially in tasks as critical as prime 
factorization, is fundamentally judged by the accuracy and precision of their results. 
In our comprehensive testing regime, both DYNEX solutions and traditional 
computational methods were subjected to rigorous accuracy assessments. These 
assessments unequivocally confirmed that solutions derived from the DYNEX 
Neuromorphic Network align perfectly with those obtained through traditional methods, 
affirming that the enhanced computational speed offered by DYNEX does not, in any 
way, compromise the fidelity of the results. 
 
It is noteworthy that the inherent accuracy of classical solvers in prime factorization 
tasks is a direct consequence of the deterministic nature of prime factorization rules. 
However, the HUBO Class, when executed on the DYNEX Neuromorphic Network, 
employs a more nuanced approach to ensure equivalent levels of accuracy. As delineated 
in equations 12 and 13 of our analysis, the model is meticulously constrained with high 
weights and penalties within the objective function. This methodological imposition is 
designed to brute force the solution pathway, compelling the QUBO model to converge 
on a singular, accurate solution by steadfastly fixing the “𝑁” variables. 
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This strategic application of constraints within the HUBO to QUBO conversion process 
exemplifies a critical advantage of the DYNEX platform. By leveraging such high 
weights and penalties, the platform ensures that even amidst the vast computational 
space and the potential for multiple solution pathways, the algorithm is directed 
towards the accurate solution with a precision that mirrors the traditional 
approaches. 
 
Furthermore, this approach underscores the flexibility and adaptability of the DYNEX 
Neuromorphic Network. It highlights the network’s capability not only to expedite 
computational processes but also to maintain an unwavering commitment to result 
accuracy, a non-negotiable attribute in the realm of computational mathematics and 
cryptography. The success of this methodology, particularly in retaining the accuracy of 
solutions across a spectrum of problem complexities, firmly positions the DYNEX 
platform as a robust and reliable computational tool, capable of meeting the exacting 
standards of precision required in scientific computation and cryptographic 
applications. 
 
7.5. Time efficiency 
 
Time efficiency stands as a pivotal metric in evaluating computational methods, 
particularly in the context of solving complex problems like prime factorization. The 
performance advantage of the DYNEX Neuromorphic Network becomes particularly 
evident when considering its capability to significantly reduce the solution time for 
large-scale problems, compared to classical prime factorization solvers. This subsection 
delves into specific instances that illustrate the remarkable time efficiency of the 
DYNEX platform: 
 

 Large-Scale Complexity: For a 201-digit number 𝑁=2666, the DYNEX 
Network showcased its computational prowess by arriving at the solution in 
merely 1.7 seconds. In stark contrast, a classical prime factorization solver 
grappled with the same problem for an extensive duration of 88 minutes, 
underscoring the substantial time efficiency offered by DYNEX for large-scale 
computations. 

 
 Moderate Complexity: The platform’s efficiency was further evidenced in 

solving for N=100, a relatively simpler 3-digit number, which DYNEX 
managed to resolve in 0.4 seconds. This is compared to the classical solver’s 
performance, which, while faster at 2.765×10−6 seconds, highlights DYNEX’s 
competitive edge even in less complex scenarios. 
 

 Intermediate Complexity: Another test involved a 98-digit number 𝑁=2322.6, 
where DYNEX’s capability was again prominently displayed, solving the 
problem in 1.23 seconds. Conversely, the classical solver required 29 minutes 
to achieve a solution, further emphasizing the DYNEX platform’s superior 
time efficiency across varying levels of problem complexity. 
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These comparative results (Figures 1-3) provide a clear visualization of the time 
efficiency advantage that the DYNEX Neuromorphic Network holds over traditional 
solvers. It is this capability to dramatically reduce computational time, especially for 
large-scale and complex problems, that positions the DYNEX platform as a 
transformative force in the field of computational mathematics and cryptography. 
 
8. Conclusion 
 
This document presented a comprehensive overview of the transition from HUBO to 
QUBO models, with a special emphasis on prime factorization problems and their 
computation on the DYNEX Neuromorphic Network. Our findings demonstrate that 
neuromorphic computing, particularly the DYNEX platform, offers significant 
advantages in terms of computational speed and efficiency compared to classical prime 
factor solvers [7]. The ability of the DYNEX network to solve a 201-digit prime 
factorization problem in mere seconds is a testament to its potential to revolutionize the 
field of computational mathematics and cryptography. 
 
The advent of quantum computing poses both challenges and opportunities. While it 
threatens the security of current cryptographic algorithms, it also spurs the development 
of quantum-resistant algorithms [1]. The DYNEX Neuromorphic Network is poised to 
play a pivotal role in this new era, providing a platform that can evolve with the 
computational demands of quantum algorithms and offer robust security solutions. 
 
As we look to the future, the continued advancement of DYNEX Neuromorphic 
computing technologies is expected to accelerate. The DYNEX Neuromorphic 
Network, with its innovative approach and scalability, is well-positioned to lead the 
charge in developing quantum-resistant cryptographic algorithms. This promises not 
only to safeguard digital security in the age of quantum computing but also to unlock 
new potential in various domains that rely on complex computation. 
 
Further research and development will focus on optimizing the neuromorphic computing 
models, enhancing the speed and accuracy of computations, and exploring new 
applications beyond prime factorization. As the landscape of computing evolves, the 
DYNEX Neuromorphic Network will continue to adapt and advance, ensuring that it 
remains at the forefront of this technological revolution. 
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