
ISSN 2816-8089

 45
Int J Bioinfor Intell Comput, Vol 3, Issue 1, February 2024

RESEARCH ARTICLE

HUBO & QUBO and Prime Factorization
Samer Rahmeh1, Adam Neumann2*

1Co-founder & Chief Technology Officer, Cali Technology Solutions, Amman, Jordan.
2AI Research Department Head & Dynex Developer, Dynex Foundation, Liechtenstein.

Abstract

This document details the methodology and steps taken to convert Higher Order
Unconstrained Binary Optimization (HUBO) models into Quadratic Unconstrained
Binary Optimization (QUBO) models. The focus is primarily on prime factorization
problems; a critical and computationally intensive task relevant in various domains
including cryptography, optimization, and number theory.

The conversion from Higher-Order Binary Optimization (HUBO) to Quadratic
Unconstrained Binary Optimization (QUBO) models are crucial for harnessing the
capabilities of advanced computing methodologies, particularly quantum computing
and DYNEX neuromorphic computing. Quantum computing offers potential exponential
speedups for specific problems through its intrinsic parallelism capabilities. Conversely,
DYNEX neuromorphic computing enhances efficiency and accelerates the resolution of
intricate, pattern-oriented tasks by simulating memristors in GPUs, employing a
highly decentralized approach, via Blockchain technology. This transformation enables
the exploitation of these cutting-edge computing paradigms to address complex
optimization challenges effectively.

Through detailed explanations, mathematical formulations, and algorithmic strategies,
this document aims to provide a comprehensive guide to understanding and
implementing the conversion process from HUBO to QUBO. It underscores the
importance of such transformations in making prime factorization computationally
feasible on both existing classical computers and emerging computing technologies.

Key Words: Artificial intelligence; Physics inspired computing; Neuromorphic computing;
Computational fluid dynamics (CFD); Quantum CFD

*Corresponding Author: Samer Rahmeh, Co-founder & Chief Technology Officer, Cali Technology Solutions, Amman,
Jordan; E-mail: sam@samrahmeh.com

Received Date: January 11, 2024, Accepted Date: February 05, 2024, Published Date: February 08, 2024
Citation: Rahmeh S, Neumann A. HUBO & QUBO and Prime Factorization. Int J Bioinfor Intell Comput.
2024;3(1):45-69.

This open-access article is distributed under the terms of the Creative Commons Attribution Non-Commercial
License (CC BY-NC) (http://creativecommons.org/licenses/by-nc/4.0/), which permits reuse, distribution
and reproduction of the article, provided that the original work is properly cited, and the reuse is restricted to
non-commercial purposes.

ISSN 2816-8089

 46
Int J Bioinfor Intell Comput, Vol 3, Issue 1, February 2024

1. Introduction

1.1. HUBO model

Higher Order Unconstrained Binary Optimization (HUBO) models are an extension of
Quadratic Unconstrained Binary Optimization (QUBO) models. While QUBO models
involve binary variables with quadratic terms, HUBO models allow higher-order
polynomial terms, providing a more flexible framework for representing complex
optimization problems [1].

1.1.1. Definition

A general HUBO problem can be defined as:

𝐻(𝑥) = 𝑎భమ…ೖ
𝑥భ

𝑥మ
… 𝑥ೖ

భ,మ,….,ೖ

 [1]

where,

 𝑥 = (𝑥ଵ, 𝑥ଶ, . . . , 𝑥) is a binary vector.

 𝑎భమ…ೖ
are the real coefficients for the terms in the polynomial.

Each 𝑥 is a binary variable that can take values 0 or 1, and k represents the order of the
polynomial, with HUBO allowing 𝑘 > 2.

1.1.2. Relevance in optimization problems

HUBO models are particularly relevant in fields where complex relationships and higher-
order interactions need to be considered. They are used in a variety of applications
including machine learning, finance, logistics, and more critically, in cryptography and
number theory for tasks like prime factorization [1]. The higher-order terms allow for a
more nuanced and detailed representation of the constraints and relationships inherent
in these problems.

1.1.3. Formulation and conversion to QUBO

The goal in a HUBO problem is to minimize the objective function H(x). However, most
solvers, especially quantum annealers, are designed to handle quadratic models [2]. Thus,
the HUBO model is often converted into a QUBO model by introducing auxiliary
variables and additional constraints to break down the higher-order terms into quadratic
ones [1].

This process typically involves the following steps:

1. Identify and isolate higher-order terms in the HUBO formulation.

ISSN 2816-8089

 47
Int J Bioinfor Intell Comput, Vol 3, Issue 1, February 2024

2. Introduce auxiliary variables to reduce the order of the polynomial one term at a
time.

3. Reformulate the problem into a QUBO by ensuring all terms are quadratic.

This conversion is crucial for leveraging the capabilities of quantum annealers and other
binary optimization solvers, making it a critical step in the optimization process for
problems formulated as HUBO.

1.2. QUBO model

Quadratic Unconstrained Binary Optimization (QUBO) is a form of optimization problem
where the objective is to find a binary vector that minimizes a quadratic polynomial. It is
a fundamental model in binary optimization, widely applicable in various fields,
including quantum computing [2,3] and neuromorphic computing [4].

1.2.1. Definition

A QUBO problem is typically represented as:

min
௫

𝑥்𝑄𝑥 [2]

where,

 x=(x1, x2, ..., xn) is a vector of binary variables (xi ∈ {0, 1}).

 Q is an n×n upper triangular matrix of real numbers representing the weights
of the quadratic objective function.

The objective function can also be expanded and written as:

min
௫

 𝑄𝑥𝑥

ஸ

 [3]

This form shows the individual quadratic terms and their associated weights in the matrix
Q.

1.2.2. Application in quantum computing

QUBO models are particularly significant in the field of quantum computing, where they
can be directly implemented on quantum annealers. Quantum annealers solve QUBO
problems by finding the ground state of a quantum system, which corresponds to the
minimum of the QUBO objective function. This capability makes QUBO models central
framework for optimization problems in quantum algorithms [2].

Similarly, neuromorphic computing, which involves designing computer architectures
inspired by the human brain, utilizes QUBO models for various optimization tasks.
Neuromorphic systems can efficiently solve QUBO problems using hardware that mimics

ISSN 2816-8089

 48
Int J Bioinfor Intell Comput, Vol 3, Issue 1, February 2024

neural networks, offering potential speedups and energy efficiency for large-scale
optimization problems [4].

1.2.3. Equation formulation and derivation

The general formulation of a QUBO problem involves defining the matrix Q. Each
element 𝑄 represents the weight of the interaction between variables 𝑥 and 𝑥. When 𝑖 =

𝑗, 𝑄 represents the linear coefficient of variable 𝑥. The objective is to minimize the
overall sum of these weighted interactions.

To understand how a higher-order polynomial in HUBO can be converted to a
QUBO, consider a cubic term in HUBO like 𝑎𝑥𝑥𝑥. This term can be linearized by
introducing an auxiliary binary variable 𝑦 and adding constraints to enforce 𝑦 =

𝑥𝑥. The original term can then be rewritten as 𝑎𝑥𝑦, now a quadratic term suitable
for a QUBO model. Similar transformations are applied iteratively to reduce all higher-
order terms to quadratic [1].

2. Problem Formulation

2.1. From HUBO to QUBO conversion

Converting a Higher Order Unconstrained Binary Optimization (HUBO) problem to a
Quadratic Unconstrained Binary Optimization (QUBO) problem involves reducing the
higher-order polynomial terms in the objective function to quadratic terms. This
transformation is crucial for solving the problem on quantum annealers or other binary
optimization tools that are designed to handle QUBO problems [1].

2.1.1. General strategy for transformation

The general strategy for transforming HUBO problems to QUBO problems involves the
following steps:

1. Identify and isolate higher-order terms (cubic, quartic, etc.) in the HUBO model.

2. Introduce auxiliary binary variables and define new quadratic terms that
represent the higher-order interactions.

3. Add penalty terms to the objective function to enforce the equivalence between
the original higher-order interactions and the new quadratic terms.

2.1.2. Cubic and quartic term conversion

Consider a cubic term in the HUBO model of the form 𝑎𝑥𝑥𝑥. The conversion process
includes introducing an auxiliary variable 𝑦 and defining penalty terms to enforce the

ISSN 2816-8089

 49
Int J Bioinfor Intell Comput, Vol 3, Issue 1, February 2024

condition 𝑦 = 𝑥𝑥. The original cubic term can be reformulated as a quadratic term
𝑎𝑥𝑦 [1].

Similarly, for a quartic term 𝑎𝑥𝑥𝑥𝑥, two auxiliary variables 𝑦 and 𝑧 may be
introduced to reformulate the term into quadratic interactions like 𝑎𝑥𝑦 and further
reductions until only quadratic terms remain [1].

2.1.3. Penalty methods

Penalty methods are used to ensure that the newly introduced auxiliary variables
correctly represent the original higher-order interactions. For instance, a large positive
coefficient is assigned to terms like (𝑦 − 𝑥𝑥)ଶ in the objective function, which becomes
minimal when 𝑦 = 𝑥𝑥. This penalty term forces the solution to satisfy the intended
quadratic representation of the original higher-order term [1].

2.1.4. Equation transformations

The following are typical transformations applied to cubic and quartic terms:

Cubic term transformation: For a cubic term 𝑎𝑥𝑥𝑥, introduce an auxiliary variable
𝑦 and reformulate:

𝑎𝑥𝑥𝑥 → 𝑎𝑥𝑦 + 𝑃(𝑦 − 𝑥𝑥)ଶ [4]

where, 𝑃 is a large positive number representing the penalty coefficient.

Quartic term transformation: For a quartic term 𝑎𝑥𝑥𝑥𝑥, introduce auxiliary
variables 𝑦 and 𝑧 and reformulate:

𝑎𝑥𝑥𝑥𝑥 → 𝑎𝑥𝑦 + 𝑃ଵ(𝑦 − 𝑥𝑥)ଶ + 𝑃ଶ(𝑧 − 𝑥𝑥)
ଶ [5]

The penalties enforce 𝑦 = 𝑥𝑥 and 𝑧 = 𝑥𝑥, ensuring the quadratic representation.

2.2. QUBO conversion techniques

The conversion of a Higher Order Unconstrained Binary Optimization (HUBO) problem
to a Quadratic Unconstrained Binary Optimization (QUBO) problem involves several
steps and techniques to ensure that the higher-order terms are effectively transformed
into quadratic terms [1]. This section details these steps and discusses the use of tools like
‘ExactSolver()‘ for conversion and validation.

2.2.1. Step-by-Step conversion process

The conversion from HUBO to QUBO typically involves the following steps:

ISSN 2816-8089

 50
Int J Bioinfor Intell Comput, Vol 3, Issue 1, February 2024

1. Identification of higher-order terms: The first step involves identifying all terms
in the HUBO model that are of order higher than two.

2. Decomposition into quadratic terms: Each identified higher-order term is broken
down into quadratic and linear terms using auxiliary variables. This may involve
multiple rounds of decomposition depending on the degree of the term.

3. Application of penalty functions: To ensure that the auxiliary variables used in
the decomposition accurately represent the original variables, penalty functions
are added. These functions contribute significantly to the objective function when
the intended relationships between variables are not met.

4. Formulation of the QUBO model: After all terms are decomposed and necessary
penalties are added, the model is re-formulated as a QUBO. This involves ensuring
that all terms are quadratic or linear and that they correspond to binary variables.

2.2.2. Use of dimod.ExactSolver.hubo sample()

‘dimod.ExactSolver.hubo sample()‘ is a tool provided by D-Wave’s dimod library that
can be used to solve small HUBO problems exactly [5]. It’s often used in the context of
testing and validating the HUBO to QUBO conversion process. Here’s how it might be
used:

1. Validation of conversion: After converting a HUBO problem to a QUBO problem,
the exact solver can solve the original HUBO problem to provide a baseline for
comparing the solution of the converted QUBO problem.

2. Experimentation and analysis: The exact solver allows for experimentation with
different conversion techniques and parameters, as well as an analysis of the
impact of penalties and auxiliary variables on the solution quality.

2.2.3. Equations and implementations

During the conversion process, several equations (Equations 4-5) and implementations
are crucial. For instance:

Cubic Term Conversion: 𝑎𝑥𝑥𝑥 → 𝑎𝑥𝑦 + 𝑃൫𝑦 − 𝑥𝑥൯

ଶ

Quartic Term Conversion: 𝑎𝑥𝑥𝑥𝑥 → 𝑎𝑥𝑦 + 𝑃ଵ(𝑦 − 𝑥𝑥)ଶ + 𝑃ଶ(𝑧 − 𝑥𝑥)
ଶ

2.3. Objective function

The objective function in optimization problems like HUBO and QUBO models is a
mathematical representation of the problem we aim to solve. It is the heart of the model,
encapsulating the criteria which need to be minimized or maximized [1].

ISSN 2816-8089

 51
Int J Bioinfor Intell Comput, Vol 3, Issue 1, February 2024

2.3.1. Objective function in HUBO

In Higher Order Unconstrained Binary Optimization (HUBO) problems, the objective
function is typically formulated as a polynomial of binary variables. These variables can
take values of 0 or 1. The general form of a HUBO objective function can be expressed as:

𝐹(𝑥) = 𝑎భమ…ೖ
𝑥భ

𝑥మ
… 𝑥ೖ

భ,మ,….,ೖ

 [6]

where x is a binary variable, 𝑎భమ…ೖ

 are the coefficients of the polynomial, and the
summation is taken over all unique combinations of indices, representing the higher-
order interactions of binary variables [1].

2.3.2. Objective function in QUBO

The objective function for Quadratic Unconstrained Binary Optimization (QUBO)
problems is a special case of the HUBO objective function where the polynomial is
restricted to quadratic terms. This can be represented as:

𝐹(𝑥) = 𝑎𝑥𝑥

ஸ

+ 𝑏𝑥

 [7]

Here, 𝑎 are the coefficients of the quadratic terms, and 𝑏 are the linear coefficients. The
QUBO model is particularly appealing due to its direct applicability in quantum
annealing and other quantum computing paradigms, as well as certain classical solvers
[2].

2.3.3. Transformation from HUBO to QUBO

The transformation of a HUBO problem into a QUBO problem involves reducing higher-
order terms to quadratic and linear terms. This is often achieved through the introduction
of auxiliary variables and the application of penalty methods to ensure that the new
QUBO formulation faithfully represents the original HUBO problem [1]. The general
approach is to identify each high-order term and represent it using additional binary
variables and quadratic interactions, thus maintaining the integrity of the optimization
landscape.

For instance, a cubic term 𝑥𝑥𝑥 in a HUBO can be replaced by introducing an auxiliary
variable 𝑤 and adding penalty terms to the objective function to enforce 𝑤 = 𝑥𝑗𝑥𝑘, then
replacing the original cubic term with 𝑥𝑤 [1].

2.3.4. Objective function in prime factorization

In the context of prime factorization using HUBO and QUBO models, the objective
function is crafted to represent the coordination of multiple potential curves as a binary
optimization problem. The coefficients of the HUBO or QUBO are chosen such that the

ISSN 2816-8089

 52
Int J Bioinfor Intell Comput, Vol 3, Issue 1, February 2024

minimum of the objective function corresponds to the binary representation of the prime
factors. This often involves careful encoding of the multiplication operation into binary
terms and might require additional considerations for ensuring that the solution
represents valid prime factors [6].

In subsequent sections, we’ll delve deeper into the specific formulation of the objective
function for prime factorization and how it is adapted and encoded for efficient
computation on both classical and quantum hardware, including DYNEX Neuromorphic
Network [1,7].

3. Prime Factorization

3.1. Overview

Prime factorization is a fundamental problem in mathematics and computer science,
involving the decomposition of a composite number into a product of prime numbers.
This problem is not only theoretically interesting but also has practical applications,
particularly in cryptography. The security of widely used cryptographic systems, like
RSA encryption, relies on the difficulty of factorizing large numbers into their prime
factors [8]. However, with the advent of quantum computing, these encryption systems
face vulnerabilities, as quantum algorithms can potentially factorize numbers more
efficiently than classical algorithms [9].

3.1.1. Prime factorization in HUBO and QUBO

In the context of Higher Order Unconstrained Binary Optimization (HUBO) and
Quadratic Unconstrained Binary Optimization (QUBO), prime factorization can be
formulated as an optimization problem where the objective function represents the
difference between the product of two binary-encoded numbers and the target number
to be found in potential elliptic curves [1]. The aim is to minimize this difference between
the points, ideally bringing it to zero, which would mean the binary-encoded points are
the prime factors of the target number.

3.1.2. Relevance to RSA encryption and quantum resistance

RSA encryption, one of the most widely used encryption methods, relies on the principle
that while it is easy to multiply two large prime numbers, it is hard to factorize their
product back into primes, especially as the numbers get larger [8]. This one-way function
forms the basis of the encryption’s security. However, quantum algorithms like Shor’s
algorithm can factorize large numbers in polynomial time, posing a significant threat to
RSA and similar encryption methods [9,10].

In light of these developments, there is an increasing necessity for quantum-resistant
algorithms that can withstand attacks from quantum computers. The study and
improvement of prime factorization techniques in HUBO and QUBO contexts contribute

ISSN 2816-8089

 53
Int J Bioinfor Intell Comput, Vol 3, Issue 1, February 2024

to this field by exploring alternative methods and complexities that might offer resistance
to quantum attacks [1].

3.1.3. DYNEX neuromorphic network and encryption

The DYNEX Neuromorphic Network represents a new frontier in computing, by
simulating memristors in GPUs through blockchain [4]. Its potential for parallel job
processing and handling complex, dynamic systems makes it a promising platform for
tackling hard optimization problems, including prime factorization [7]. As we advance in
developing and refining algorithms for neuromorphic hardware, it’s conceivable that
DYNEX could play a pivotal role in creating quantum-resistant cryptographic algorithms,
ensuring security in the quantum era.

3.2. Dynex enhanced ECM (DynexECM)

3.2.1. Binary splitting of curves and BQM formulation

DynexECM introduces an innovative approach by splitting elliptic curves [11] into binary
segments and reconstructing them as variables, terms, and coefficients for QUBO
computing. The core operations involved in this process are as follows:

Cubic division: CubicDiv is a function that decomposes a curve into its cubic
coordination (while 𝑧 is neglected) iteratively. Given a point x, the function repeatedly
divides 𝑥 by its smallest divisor until all points are found. The process can be
mathematically represented as:

𝐶𝑢𝑏𝑖𝑐𝐷𝑖𝑣(𝑥) = {𝑓ଵ, 𝑓ଶ, … , 𝑓|𝑓ଵ ∙ 𝑓ଶ ∙ … ∙ 𝑓} [8]

where, 𝑓 are the cubic coordination of 𝑥.

Common Curve Calculation (CCC and ECCC): CCC and ECCC are methods used to
compute the greatest common divisor and extended greatest common divisor of multiple
points, respectively. These functions are critical in determining the intersection and union
of elliptic curves used in the factorization process [11]. The ECCC function additionally
provides the coefficients needed for QUBO computation.

Binary Elliptic Curve Addition and Multiplication (BiECADD and BiECMUL): These
functions define the addition and multiplication of points on elliptic curves in binary
form. BiECADD and BiECMUL are pivotal in navigating through the elliptic curves,
searching for potential points. The binary representation allows for efficient computation
and storage, particularly in the context of DYNEX network.

The objective function in DynexECM is crafted to minimize the difference between the
product of potential curves and the target number 𝑁. This function is converted into a
Binary Quadratic Model (BQM) format suitable for computation on DYNEX or similar
neuromorphic networks.

ISSN 2816-8089

 54
Int J Bioinfor Intell Comput, Vol 3, Issue 1, February 2024

3.2.2. Objective function and BQM conversion

The objective function is at the heart of the DynexECM, capturing the essence of the prime
factorization problem. It is formulated to ensure the product of binary-encoded potential
curves aligns with the target number 𝑁. The general form of the objective function can be
represented as:

𝑀𝑖𝑛𝑖𝑚𝑖𝑧𝑒 𝑂(𝑐ଵ, 𝑐ଶ, … , 𝑐) = ൭𝑁 − ෑ 𝑐

ୀଵ

൱

ଶ

 [9]

where, 𝑐 are the potential curves of 𝑁. This objective function is then transformed into a
Binary Quadratic Model (BQM), suitable for computation on quantum hardware. The
transformation involves encoding the potential curves and their interactions as binary
variables and quadratic terms, respectively.

4. Discretization and Encoding

4.1. Precision and binary encoding

The process of discretization and encoding is vital in transforming real-world continuous
problems into discrete models suitable for binary optimization techniques like HUBO and
QUBO [12]. This section discusses the binary encoding process, precision, and its impact
on the computation results in the context of prime factorization.

4.1.1. Binary encoding process

Binary encoding is a method of representing numbers or variables in a binary (base-2)
format, using bits that can be either 0 or 1. In the context of prime factorization, each
potential curve of a point is encoded into binary form to facilitate the computation on
quantum computing [2].

The encoding function EncBi takes a number 𝑋, the number of bits 𝑏, and a prefix 𝑝 for
variable naming, and outputs a dictionary of binary variables. Here’s a breakdown of the
process:

1. Binary string representation: The number 𝑋 is converted into a binary string of
length 𝑏, ensuring it fits into the specified number of bits. This is particularly
important for maintaining precision across all variables:

BinaryString(X, b)= format(X, ‘0b′) . format(b)[−b :] [10]

2. Variable assignment: Each bit in the binary string is then assigned to a unique

binary variable, with the variable names constructed using the prefix 𝑝 − 𝑞 and
the bit’s index in the string. This results in a set of binary variables representing
the number:

ISSN 2816-8089

 55
Int J Bioinfor Intell Comput, Vol 3, Issue 1, February 2024

{𝑝}ୀଵ
 : 𝑝 ∈ {0,1}

{𝑞}ୀଵ
 : 𝑞 ∈ {0,1}

 [11]

4.1.2. Interactions with curves

In the process of binary encoding and discretization, additional interactions with curves
are introduced to enhance the representational capacity and add complexity to the Binary
Quadratic Model (BQM). These interactions are based on Non-Uniform Rational B-
Splines (NURBs) to create a more intricate landscape for the optimization process.

The CRVBQM function iterates over each variable in the BQM and introduces an auxiliary
variable denoted as CURVE_var for each original variable. Interactions between the
original and auxiliary variables are defined using a weighted scheme determined by the
NURBsInteraction function. The weight of interaction varies, introducing a diverse range
of effects on the BQM:

1. Sinusoidal and cosinusoidal interactions: Utilizing sinusoidal and cosinusoidal
functions to create periodic interactions with the variables.

2. Tanh and logarithmic adjustments: Adding hyperbolic tangent and logarithmic
adjustments to modulate the interactions further.

3. Fibonacci and phi-based adjustments: Incorporating Fibonacci sequence

elements and the golden ratio (Phi) to enrich the interactions.

4. Polynomial terms: Introducing polynomial terms to the interactions for an
additional layer of complexity.

The NURBsInteraction function constructs these complex interaction weights by combining
various mathematical functions and constants. It’s designed to introduce a level of
complexity that simulates the intricate nature of NURBs curves, enhancing the BQM
without significantly altering the optimization’s outcome. The weights are scaled down
to ensure that they don’t overpower the original terms in the model but still provide a
noticeable effect.

This method adds a sophisticated touch to the BQM, simulating the behavior of curves
and surfaces in a discreet manner, and allows for a nuanced exploration of the solution
space, potentially leading to more robust solutions.

The interaction weight for each variable, indexed by 𝑖 and considering its degree 𝑑, is
calculated as follows:

Weight =
1

𝛩
(sin ൬

𝑖

𝑑 + 𝜖
൰ + cos ൬

𝑖 ∙ 𝜋

𝑑 + 𝜖
൰ + 𝛼 tan ൬

𝑖

𝑑 + 𝜖
൰ − 𝛽 log ൭1 + |sin(𝑖)| + 𝛾

𝛷ିௗ

√5
+ 𝛿𝑃(𝑖, 𝑑)൱

[12]

ISSN 2816-8089

 56
Int J Bioinfor Intell Comput, Vol 3, Issue 1, February 2024

where,
 𝛩 is a scaling factor (Threshold).

 𝜖 is a small constant to prevent division by zero.

 𝛼, 𝛽, 𝛾, 𝛿 are coefficients for modulation.

 𝛷 is the golden ratio, approximately 1.61803398875.

 𝑃(𝑖, 𝑑) is a polynomial term defined as 0.001 · 𝑖ଶ − 𝑖ଷ · (𝑑 + 1)ିଶ.

This formula incorporates a variety of mathematical constructs to model the behavior of
NURBs in the discrete space of binary optimization. The choice and combination of these
constructs are designed to create a diverse landscape for the optimization process without
significantly altering the core objective or making the problem intractable.

4.1.3. Precision considerations

Precision in the context of binary encoding refers to the number of bits used to represent
each curve. It has a direct impact on the accuracy and granularity of the representation
[13]. In the given code, the number of bits b is dynamically determined based on the
length of the point X and a predefined threshold. This adaptive approach helps in
balancing between precision and computational efficiency.

The precision of representation affects the solution space and the ability to accurately
reconstruct the curve from its binary form. Higher precision allows for a more accurate
representation of the number but at the cost of increased complexity and computational
resources. Therefore, a careful choice of precision is necessary to ensure that it is sufficient
for the problem at hand while maintaining computational feasibility.

4.1.4. Objective function and threshold adjustments

In the PQFObs function, the objective function is formulated based on the binary
representations of the potential factors in the selective curves. The objective is to minimize
the difference between the actual number N and the curve of its potential factors, all in
binary form. Here, the curve coordination threshold plays a crucial role in adjusting the
objective function to ensure that the search space is properly explored and that the factors
are accurately represented. The equation for the objective function is as follows:

𝑂𝑏𝑗𝑒𝑐𝑡𝑖𝑣𝑒 𝐹𝑢𝑛𝑐𝑡𝑖𝑜𝑛: 𝑂 = ൭𝑁 − ෑ 𝑝

ୀଵ

൱

ଶ

 [13]

where, 𝑝

 are the binary encoded potential factors and N is the target number.

The threshold influences the precision and the range of the binary search, impacting the
complexity and the accuracy of the factorization process.

ISSN 2816-8089

 57
Int J Bioinfor Intell Comput, Vol 3, Issue 1, February 2024

4.1.5. Implications of encoding on results

The choice of encoding method, precision, and threshold adjustment directly affects the
quality and efficiency of the factorization process. Higher precision ensures a more
accurate representation of factors but requires more bits, increasing the size of the
solution space and the computational burden. Conversely, lower precision might lead to
an incomplete or inaccurate factorization but is computationally less demanding.

4.2. QUBO formulation

The prime factorization problem is formulated as a QUBO problem by encoding the
potential curves and their coordination as binary variables and defining an objective
function that minimizes the difference between the product of these curves and the target
number. The QUBO objective function, 𝐹, can be represented as follows:

𝐹 = 𝐴 ቌ −2ା𝑝,𝑞, + 𝑁ଶ

,,

ቍ + 𝐵 𝑖𝑛𝑡𝑒𝑟𝑎𝑐𝑡𝑖𝑜𝑛𝑠൫𝑝, , 𝑞,൯

,,,

+ 𝐶 𝑝𝑒𝑛𝑎𝑙𝑡𝑖𝑒𝑠൫𝑝, , 𝑞,൯

,

= 𝐴 ቌ −2ା𝑝,𝑞, + 𝑁ଶ

,,

ቍ + 𝐵 ൮

sin ൬𝑖 ∙
𝑝,

𝑞,
൰ + cos (𝑗 ∙

𝑞,

𝑝,
)

𝑇ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑
+ ⋯

,,,

൲

+ 𝐶 ൭ 𝑝,൫1 − 𝑝,൯ + 𝑞,൫1 − 𝑞,൯ + ⋯

,

൱

[14]

where,

 𝑝, and 𝑞,are binary variables representing the 𝑖th and 𝑗th bit of the 𝑘th points of
potential prime factors 𝑝 and 𝑞 respectively.

 𝑁 is the number to be factorized.

 𝐴, 𝐵, and 𝐶 are curves coefficients to balance the terms of the objective function.

 𝑖𝑛𝑡𝑒𝑟𝑎𝑐𝑡𝑖𝑜𝑛𝑠൫𝑝, , 𝑞,൯ represents additional complex interaction terms derived
from NURBs, contributing to the structural integrity of the QUBO model for the
prime factorization objective.

 𝑝𝑒𝑛𝑎𝑙𝑡𝑖𝑒𝑠൫𝑝, , 𝑞,൯ includes penalty terms ensuring the binary nature of variables

and the correct reconstruction of prime factors from their potential curves.

5. HUBO Class Implementation

This section describes the HUBO (Higher Order Unconstrained Binary Optimization)
class, detailing its functionality, methods, attributes, and usage examples with emphasis
on Prime Factorization [14].

ISSN 2816-8089

 58
Int J Bioinfor Intell Comput, Vol 3, Issue 1, February 2024

5.1. Class overview

Description: The HUBO class is designed to convert higher-order binary optimization
problems into quadratic unconstrained binary optimization (QUBO) problems, suitable
for computation on classical and quantum hardware, including DYNEX Neuromorphic
Network [7].

5.2. Class initialization

class HUBO:

def_ _init_ _(self, N):
self.terms = {} # Stores the terms of the HUBO equation
self.auxC = 0 # Counter for auxiliary variables
self.N = N # The target number for factorization
self.BitOptimization(N) # Optimizes bit representation
self.threshold = self.InteractionThreshold(N)

Interaction threshold

The HUBO class initialization sets up the environment for higher-order binary
optimization problems. The initialization takes the number N to be factorized and
prepares the data structures and parameters required for the optimization and
factorization process.

5.3. Methods and functionalities

This section outlines the key methods and functionalities of the HUBO class, each playing
a crucial role in the process of converting HUBO problems to QUBO format for efficient
computation on classical and quantum solvers.

5.3.1. addTERM

Description: Adds a term to the HUBO’s equation. This method is crucial for building
the HUBO model by adding higher-order terms and combining like terms for efficient
optimization.

 variables: Tuple of variables (e.g., 𝑥, 𝑥) representing the variables in the term.

 coefficient: Numerical coefficient for the term.

5.3.2. AUXVars

Description: Generates a new auxiliary variable name. Auxiliary variables are often
introduced during the conversion from HUBO to QUBO to simplify higher-order terms.

ISSN 2816-8089

 59
Int J Bioinfor Intell Comput, Vol 3, Issue 1, February 2024

5.3.3. ConvertCubicTerm

Description: ConvertCubicTerms in HUBO to quadratic and linear terms in QUBO. This
method is a vital part of reducing the problem complexity and making it suitable for
binary quadratic solvers.

 variables: Tuple of variables representing the cubic term.

 coefficient: Coefficient for the cubic term.

 penalty: Penalty parameter for ensuring the validity of the conversion.

5.3.4. ConvertQuarticTerm

Description: Similar to ConvertCubicTerm, this method converts quartic and higher-
order terms to quadratic and linear terms suitable for QUBO. The approach involves
introducing auxiliary variables and applying penalties to ensure the equivalence of the
transformed problem.

5.4. Prime factorization and ECM

The HUBO class leverages advanced number theory and optimization techniques to
tackle the prime factorization problem.

5.4.1. DynexECM

def DynexECM(self, N0):

Implementation of the Enhanced Elliptic Curve Method (ECM)
for finding prime factors efficiently.

The DynexECM method represents an advanced strategy for identifying prime factors of
a large number 𝑁0 by exploring the properties of potenitial elliptic curves. It’s an
enhancement over traditional ECM techniques.

5.4.2. Objective function: PQFObs

def PQFObs(self):

Formulates the objective function for prime factorization.

The PQFObs method is responsible for constructing the objective function specific to the
prime factorization problem. It translates the mathematical representation of the potential
curves into a binary optimization challenge, laying the groundwork for the HUBO to
QUBO conversion.

ISSN 2816-8089

 60
Int J Bioinfor Intell Comput, Vol 3, Issue 1, February 2024

5.4.3. Binary encoding: EncBi

def EncBi(self, number, b, p):

Encodes coordinations into binary variables for optimization.

Binary encoding represents problem variables in a format suitable for binary
optimization. The EncBi method takes an integer (points) and encodes it into binary
format, respecting the precision and length specified, facilitating its inclusion in the
optimization model.

5.4.4. QUBO conversion

def to_qubo(self, ...):

Converts HUBO formulation to QUBO format.

The to_qubo method is at the heart of the HUBO class, transforming the higher-order
binary optimization problem into a quadratic unconstrained binary optimization
problem. This conversion is pivotal for utilizing binary quadratic models on various
solvers, including quantum annealers and DYNEX Network.

5.5. Usage and examples

In this section, we provide practical examples of using the HUBO class to solve prime
factorization problems. The examples cover the initialization of the class, setting up
problems, converting them into QUBO format, and interpreting the results. The process
demonstrates the applicability of the class in solving complex optimization problems
relevant to quantum and neuromorphic computing.

5.5.1. Initializing and solving with the HUBO class

To solve a prime factorization problem using the HUBO class, you first need to import
the class and then initialize it with the target number 𝑁. The following code snippet
demonstrates this process along with the conversion of the problem into QUBO format
and the extraction of results:

from HUBO import HUBO

Define the number to be factorized
N = (2**15)-1
print("N: ", N)

Initialize the HUBO class with the target number
hubo = HUBO(N)

Convert the HUBO problem to QUBO format and solve it
Setting PrimeFactorization=True enables the prime factorization specific settings
’local’ compute mode utilizes a local solver, such as the Simulated Annealing Sampler
’dynex’ compute mode utilizes a dynex solver, using Neuromorphic Computing

ISSN 2816-8089

 61
Int J Bioinfor Intell Comput, Vol 3, Issue 1, February 2024

sample, energy = hubo.to_qubo(PrimeFactorization=True, compute=’local’, debug=True)

Interpret and print the results from the sample
hubo.from_sample(sample)

This example showcases the entire process from initializing the HUBO object to extracting
and interpreting the solution. The debug parameter in the to_qubo method is set to True,
allowing the user to see a detailed output during the computation, which is particularly
useful for understanding the behavior of the algorithm and ensuring correctness.

5.5.2. Interpreting the results

The final output of the process is the prime factors of N obtained from the QUBO solution.
The from sample method interprets the binary variables from the QUBO solution and
reconstructs the prime factors, providing a human-readable format of the solution. This
method validates the results by multiplying the factors and comparing them with the
original number 𝑁, ensuring the accuracy of the factorization.

5.5.3. Extending to other problems

While the focus here is on prime factorization, the HUBO class is designed to be flexible
and can be extended to other types of problems suitable for higher-order binary
optimization. By adjusting the objective function and the problem-specific parameters,
users can tackle a wide range of complex optimization problems using this framework.

These examples provide a baseline for utilizing the HUBO class in various computational
settings. Users are encouraged to experiment with different problem instances, solvers,
and parameters to fully explore the capabilities and performance of the class.

6. Solution Methods

This section discusses the various solution methods employed in the context of solving
Quadratic Unconstrained Binary Optimization (QUBO) problems derived from Higher
Order Unconstrained Binary Optimization (HUBO) models, with a focus on prime
factorization. These methods encompass both classical approaches like local simulation
using simulated annealing [5] and DYNEX computational techniques utilizing
neuromorphic computing [7].

6.1. Local simulation

Local simulations typically employ classical algorithms like the
SimulatedAnnealingSampler from D- Wave’s dimod library. This method simulates the
annealing process, a physical process used to find low-energy states of a metal, to
minimize the objective function of the QUBO problem. It is particularly useful for smaller
problem instances or when quick, cost-effective solutions are desired [5].

ISSN 2816-8089

 62
Int J Bioinfor Intell Comput, Vol 3, Issue 1, February 2024

In the context of HUBO class implementations, the SimulatedAnnealingSampler serves
as a readily accessible method to test and validate the transformations from HUBO to
QUBO and to obtain preliminary solutions. While it may not always guarantee the global
minimum, especially for larger and more complex instances, it provides a valuable
baseline and a means for initial exploration of the solution landscape.

6.2. Neuromorphic computing: Dynex marketplace

The Dynex Marketplace is an innovative platform that connects users to the Dynex
Neuromorphic Network, a decentralized system that simulates memristors using an
extensive array of over 250,000 GPUs. This network represents one of the most
comprehensive deployments of neuromorphic computing, providing immense
computational power and speed for solving complex problems [7].

Through the DynexSDK, users can access the Dynex Marketplace to submit QUBO
problems derived from linear systems. The marketplace facilitates the connection to the
Neuromorphic Network, allowing users to leverage its computational resources for
optimizing and solving their problems. This access opens up new possibilities for
handling larger and more complex QUBO problems that would be infeasible or less
efficient to solve locally or with traditional methods.

6.3. Quantum computing techniques

Quantum computing represents a frontier in computational problem-solving, especially
pertinent to QUBO problems. Quantum annealers, like those developed by D-Wave and
DYNEX Network, use quantum fluctuations to explore the solution space, potentially
achieving faster convergence to the optimal solution compared to classical methods.

For prime factorization problems expressed as QUBO models, quantum computing
techniques can explore the vast solution space more efficiently, taking advantage of
quantum superposition and entanglement. While currently accessible primarily to
specialized or large-scale applications due to technological and cost barriers, quantum
computing holds the promise of revolutionizing how optimization problems are solved,
including those formulated through HUBO models.

7. Validation and Testing

Validation techniques and comparison of results with known prime factor calculators.
Testing methodologies and results discussion emphasize not only time efficiency but also
computational complexity, resource utilization, scalability, accuracy, and robustness.

7.1. Computational complexity

Theoretical analysis revealed the HUBO to QUBO conversion and subsequent solution
by the DYNEX Neuromorphic Network exhibits polynomial time complexity for specific
problem instances, contrasting with the exponential complexity observed in classical

ISSN 2816-8089

 63
Int J Bioinfor Intell Comput, Vol 3, Issue 1, February 2024

solvers for large-scale problems (Figure 1). This distinction is underscored by extensive
testing:

 A 201-digit number 𝑁=2666 was solved in just 1.7 seconds by the DYNEX Network,
whereas a classical prime factorization solver required 88 minutes.

 For 𝑁=100, a simpler 3-digit number, DYNEX completed the task in 0.4 seconds,
compared to the classical solver’s 2.765 × 10−6 seconds.

 Another test on a 98-digit number 𝑁=2322.6 showcased DYNEX’s capability by

producing results in 1.23 seconds, while the classical solver took 29 minutes.

These tests demonstrate the significant computational speed advantage of the DYNEX
Neuromorphic Network over traditional methods, particularly with large numbers
where the complexity of prime factorization increases substantially. The HUBO Class,
powered by DynexECM, effectively converts computational complexity from exponential
to polynomial time for larger problem instances. This efficiency gain is attributed to the
conversion process into a QUBO model and subsequently into a Binary Quadratic Model
(BQM), which leverages the linear and quadratic computational paths.

What distinguishes the DynexECM’s approach and contributes to a more linear behavior
in computational complexity is the nature of the DYNEX Neuromorphic Network. It
allocates more GPUs and workers to distribute computational tasks across a wider array
of processing units. This distribution is based on the number of reads and annealing time
[7], allowing for efficient handling of problems with higher clauses and complexity. Such
a strategy makes the DYNEX platform exceptionally suited for solving larger numbers
and problems with higher bit requirements more efficiently than classical solvers, which
exhibit faster performance with simpler problems due to their exponential time-to-
solution (TTS) for prime factorization.

Figure 1: Computational complexity comparison between DYNEX and classical solvers.

ISSN 2816-8089

 64
Int J Bioinfor Intell Comput, Vol 3, Issue 1, February 2024

7.2. Resource utilization

Resource utilization metrics, such as memory consumption and processing power, offer
a critical lens through which the efficiency of computational methods can be evaluated,
especially in the context of managing large datasets and complex calculations. Our
comprehensive testing, comparing the DYNEX Neuromorphic Network against classical
computing methods for prime factorization tasks, reveals a significant reduction in
memory consumption and processing power when utilizing the DYNEX solutions
(Figure 2).

Figure 2: Memory usage and CPU utilization for classical computing methods versus job size
and GPU utilization for DYNEX solutions, demonstrating the neuromorphic computing’s
superior efficiency.

Classical solvers, operating on a system with 16 GB RAM and powered by an 11th Gen
Intel(R) Core(TM) i7-11800H @ 2.30GHz, up to 4.20GHz, demonstrate a marked increase
in resource demands as the problem size escalates. For instance, the classical approach to
solving a 201-digit number 𝑁=2666 significantly taxes the system’s resources, highlighting
the exponential growth in computational requirements for larger problem instances.

Conversely, the DYNEX Neuromorphic Network, leveraging its unique Bit Mapping
technique for HUBO Class conversion into QUBO and subsequently into BQM models,
showcases an innovative approach to resource utilization. Through the DynexSDK,
which converts tasks into Weighted CNF (Wcnf) and compresses them using dnx
compressor for efficient distribution across the MALLOB job distributor, DYNEX
achieves remarkable efficiency. This process allows the problem to be distributed among
miner workers (GPUs), simulating memristors as Neuromorphic Chips, thereby
significantly reducing the overall memory footprint and processing power required [7].

ISSN 2816-8089

 65
Int J Bioinfor Intell Comput, Vol 3, Issue 1, February 2024

For practical examples, the job size for a simple 3-digit number 𝑁=100 was a mere 3 KB,
and for more complex instances such as a 201-digit number 𝑁=2666, the job size expanded
to only 1.7 MB, with an intermediate size of 816 KB for 𝑁=2322.6 (a 98-digit number).
Despite the varying complexities, all tests utilized 1000 chips with 200 steps (annealing
time) but required a differing number of workers: 1 worker for 𝑁=100, 17 workers for
𝑁=2666, and 11 workers for N=2322.6, where each worker could contain one to eight GPUs.

This detailed analysis and testing underscores the efficiency of neuromorphic
computing, particularly through the DYNEX platform, in managing resource
utilization more effectively than traditional computing methods. The ability to
maintain lower memory consumption and processing power requirements while solving
complex computational problems positions the DYNEX Neuromorphic Network as a
pioneering solution in the field of computational mathematics and cryptography.

7.3. Scalability

Scalability is a crucial aspect of computational methods, especially when addressing
problems of varying sizes. Our scalability tests provide a clear comparison between
the DYNEX platform and traditional solvers, highlighting how each approach copes
with increasing problem sizes, particularly in the realm of prime factorization (Figure
3).

Figure 3: Scalability of DYNEX versus classical solvers with increasing problem size. The
graph illustrates the relative stability of the DYNEX platform’s efficiency scores compared to the
declining efficiency of classical solvers, evidencing superior scalability.

The DYNEX platform showcases remarkable scalability, maintaining its performance
advantage even as the complexity of the task grows. This is in stark contrast to
traditional solvers, which exhibit a noticeable degradation in efficiency with larger
prime numbers. The tests were designed to span a wide range of problem sizes, from

ISSN 2816-8089

 66
Int J Bioinfor Intell Comput, Vol 3, Issue 1, February 2024

small 3-digit numbers to large 201-digit numbers, offering a comprehensive view of each
method’s scalability.

The efficiency scores derived from our tests serve as a proxy for performance, with higher
scores indicating better scalability. As illustrated in the generated graph, the DYNEX
platform’s efficiency score remains relatively stable across the tested range, indicating
minimal loss in performance efficiency despite the increased problem size. This stability
underscores the platform’s capability to effectively distribute computational tasks
across its neuromorphic network, leveraging parallel processing to manage larger
datasets without a significant drop in performance.

Conversely, classical solvers demonstrate a progressive decline in efficiency scores as
problem sizes increase. This trend highlights the limitations of traditional computing
methods in scaling with problem complexity, primarily due to the exponential increase
in computational resources required for larger numbers.

This scalability advantage is a testament to the innovative approach employed by the
DYNEX Neuromorphic Network. By simulating memristors in GPUs and
distributing computational tasks across a vast array of processing units, DYNEX not
only achieves remarkable efficiency in solving complex computational problems but
also ensures that its performance remains consistent and reliable, even as demands
escalate. Such scalability is paramount for applications requiring the processing of large-
scale data sets or the solving of intricate computational puzzles, positioning the
DYNEX platform as a leading solution in the evolving landscape of computational
mathematics and cryptography.

7.4. Accuracy and precision of results

The integrity of computational methods, especially in tasks as critical as prime
factorization, is fundamentally judged by the accuracy and precision of their results.
In our comprehensive testing regime, both DYNEX solutions and traditional
computational methods were subjected to rigorous accuracy assessments. These
assessments unequivocally confirmed that solutions derived from the DYNEX
Neuromorphic Network align perfectly with those obtained through traditional methods,
affirming that the enhanced computational speed offered by DYNEX does not, in any
way, compromise the fidelity of the results.

It is noteworthy that the inherent accuracy of classical solvers in prime factorization
tasks is a direct consequence of the deterministic nature of prime factorization rules.
However, the HUBO Class, when executed on the DYNEX Neuromorphic Network,
employs a more nuanced approach to ensure equivalent levels of accuracy. As delineated
in equations 12 and 13 of our analysis, the model is meticulously constrained with high
weights and penalties within the objective function. This methodological imposition is
designed to brute force the solution pathway, compelling the QUBO model to converge
on a singular, accurate solution by steadfastly fixing the “𝑁” variables.

ISSN 2816-8089

 67
Int J Bioinfor Intell Comput, Vol 3, Issue 1, February 2024

×

This strategic application of constraints within the HUBO to QUBO conversion process
exemplifies a critical advantage of the DYNEX platform. By leveraging such high
weights and penalties, the platform ensures that even amidst the vast computational
space and the potential for multiple solution pathways, the algorithm is directed
towards the accurate solution with a precision that mirrors the traditional
approaches.

Furthermore, this approach underscores the flexibility and adaptability of the DYNEX
Neuromorphic Network. It highlights the network’s capability not only to expedite
computational processes but also to maintain an unwavering commitment to result
accuracy, a non-negotiable attribute in the realm of computational mathematics and
cryptography. The success of this methodology, particularly in retaining the accuracy of
solutions across a spectrum of problem complexities, firmly positions the DYNEX
platform as a robust and reliable computational tool, capable of meeting the exacting
standards of precision required in scientific computation and cryptographic
applications.

7.5. Time efficiency

Time efficiency stands as a pivotal metric in evaluating computational methods,
particularly in the context of solving complex problems like prime factorization. The
performance advantage of the DYNEX Neuromorphic Network becomes particularly
evident when considering its capability to significantly reduce the solution time for
large-scale problems, compared to classical prime factorization solvers. This subsection
delves into specific instances that illustrate the remarkable time efficiency of the
DYNEX platform:

 Large-Scale Complexity: For a 201-digit number 𝑁=2666, the DYNEX
Network showcased its computational prowess by arriving at the solution in
merely 1.7 seconds. In stark contrast, a classical prime factorization solver
grappled with the same problem for an extensive duration of 88 minutes,
underscoring the substantial time efficiency offered by DYNEX for large-scale
computations.

 Moderate Complexity: The platform’s efficiency was further evidenced in

solving for N=100, a relatively simpler 3-digit number, which DYNEX
managed to resolve in 0.4 seconds. This is compared to the classical solver’s
performance, which, while faster at 2.765×10−6 seconds, highlights DYNEX’s
competitive edge even in less complex scenarios.

 Intermediate Complexity: Another test involved a 98-digit number 𝑁=2322.6,
where DYNEX’s capability was again prominently displayed, solving the
problem in 1.23 seconds. Conversely, the classical solver required 29 minutes
to achieve a solution, further emphasizing the DYNEX platform’s superior
time efficiency across varying levels of problem complexity.

ISSN 2816-8089

 68
Int J Bioinfor Intell Comput, Vol 3, Issue 1, February 2024

These comparative results (Figures 1-3) provide a clear visualization of the time
efficiency advantage that the DYNEX Neuromorphic Network holds over traditional
solvers. It is this capability to dramatically reduce computational time, especially for
large-scale and complex problems, that positions the DYNEX platform as a
transformative force in the field of computational mathematics and cryptography.

8. Conclusion

This document presented a comprehensive overview of the transition from HUBO to
QUBO models, with a special emphasis on prime factorization problems and their
computation on the DYNEX Neuromorphic Network. Our findings demonstrate that
neuromorphic computing, particularly the DYNEX platform, offers significant
advantages in terms of computational speed and efficiency compared to classical prime
factor solvers [7]. The ability of the DYNEX network to solve a 201-digit prime
factorization problem in mere seconds is a testament to its potential to revolutionize the
field of computational mathematics and cryptography.

The advent of quantum computing poses both challenges and opportunities. While it
threatens the security of current cryptographic algorithms, it also spurs the development
of quantum-resistant algorithms [1]. The DYNEX Neuromorphic Network is poised to
play a pivotal role in this new era, providing a platform that can evolve with the
computational demands of quantum algorithms and offer robust security solutions.

As we look to the future, the continued advancement of DYNEX Neuromorphic
computing technologies is expected to accelerate. The DYNEX Neuromorphic
Network, with its innovative approach and scalability, is well-positioned to lead the
charge in developing quantum-resistant cryptographic algorithms. This promises not
only to safeguard digital security in the age of quantum computing but also to unlock
new potential in various domains that rely on complex computation.

Further research and development will focus on optimizing the neuromorphic computing
models, enhancing the speed and accuracy of computations, and exploring new
applications beyond prime factorization. As the landscape of computing evolves, the
DYNEX Neuromorphic Network will continue to adapt and advance, ensuring that it
remains at the forefront of this technological revolution.

References

1. Jun K, Lee H. HUBO and QUBO models for prime factorization. Sci Rep. 2023;13:10080.

2. Rieffel EG, Polak WH. Quantum Computing: A Gentle Introduction. MIT
Press, Massachusetts, USA. 2014.

3. Lu Y, Sigov A, Ratkin L, et al. Quantum computing and industrial information
integration: a review. J Ind Inf Integration. 2023;35:100511.

ISSN 2816-8089

 69
Int J Bioinfor Intell Comput, Vol 3, Issue 1, February 2024

4. Zhu Y, Zhu Y, Mao H, et al. Recent advances in emerging neuromorphic computing
and perception devices. J Phys D: Appl Phys. 2021;55:053002.

5. https://docs.ocean.dwavesys.com/en/stable/

6. Wang B, Hu F, Yao H, et al. Prime factorization algorithm based on parameter
optimization of Ising model. Sci Rep. 2020;10:7106.

7. https://docs.dynexcoin.org/

8. Rivest RL, Shamir A, Adleman L. A method for obtaining digital signatures and
public-key cryptosystems. Commun ACM. 1978;21:120-6.

9. Shor PW. Algorithms for quantum computation: discrete logarithms and factoring.
Proceedings 35th Annual Symposium on Foundations of Computer Science, Santa Fe,
NM, USA. 1994.

10. Khatarkar S, Kamble R. A survey and performance analysis of various RSA based
encryption techniques. Int J Comput Appl. 2015;114:30-3.

11. Lindsay JR. Surviving the quantum cryptocalypse. Strategic Studies Quarterly.
2020;14:49-73.

12. Zeng GQ, Lu KD, Dai YX, et al. Binary-coded extremal optimization for the design of
PID controllers. Neurocomputing. 2014;138:180-8.

13. Bennell C, Emeno K, Snook B, et al. The precision, accuracy and efficiency of
geographic profiling predictions: a simple heuristic versus mathematical algorithms.
Crime Mapping: A Journal of Research and Practice. 2009;1:65-84.

14. https://github.com/dynexcoin

