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Abstract  
 
This comprehensive review explores the integration of Artificial Intelligence (AI) in anticancer 
drug discovery, highlighting its transformative impact on streamlining the identification, 
design, and synthesis of novel drug molecules. Leveraging expansive datasets, AI and 
machine learning technologies enhance the understanding of cancer biology, facilitate target 
identification, and accelerate the design of molecules with desirable pharmacological 
properties. Despite promising advancements, challenges persist, including issues related to 
data quality, model interpretability, and the practical application of AI-generated findings in 
clinical settings. This review critically examines these challenges, proposes advanced AI 
models for drug combination predictions, and advocates for collaborative efforts to refine and 
implement AI methodologies in clinical oncology. The potential of AI to revolutionize 
anticancer drug discovery is immense, providing a new paradigm that merges precision with 
efficiency to push the boundaries of therapeutic innovation. Through rigorous validation and 
interdisciplinary cooperation, AI-driven strategies hold the promise to significantly shorten 
drug development timelines and improve clinical outcomes, ushering in a  
new era of personalized medicine in cancer treatment. 
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1. Introduction 
 
Over the last decade, the landscape of cancer therapeutics has undergone a profound 
transformation, marked by a notable shift towards harnessing the capabilities of artificial 
intelligence (AI) and machine learning (ML) [1]. The integration of advanced computational 
techniques with traditional drug discovery processes has not only opened new frontiers but 
has also provided unparalleled opportunities for the identification and development of 
ground-breaking anticancer agents [2]. This review delves into the pivotal role played by AI 
and ML in simplifying the intricate landscape of anticancer drug discovery. 
 
AI and ML have emerged as indispensable tools in analysing expansive biological datasets, 
empowering researchers to discern patterns, correlations, and potential targets that may have 
eluded conventional methods [3]. The amalgamation of genomics, proteomics, and other 
omics data facilitates a comprehensive understanding of cancer biology, enabling the 
identification of novel biomarkers and potential therapeutic targets [4]. This data-driven 
approach speeds up the early stages of drug discovery by offering insights into cancer’s 
molecular mechanisms and helping prioritize candidate compounds [5]. Addressing a 
foremost challenge in anticancer drug discovery, the identification and validation of suitable 
molecular targets, AI and ML algorithms excel in analysing intricate biological networks. Such 
algorithms predict target-disease associations and elucidate complex interactions, offering a 
sophisticated computational approach to prioritize potential targets based on their relevance 
to specific cancer types, molecular pathways, and cellular processes. This targeted 
methodology not only reduces the likelihood of off-target effects but also augments the overall 
success rate of drug development [6,7].  
 
The advent of AI-driven molecular design has ushered in a revolutionary phase in creating 
novel anticancer compounds. Generative models and deep learning algorithms significantly 
expedite the drug design phase by predicting molecular structures with desired 
pharmacological properties [8]. Furthermore, machine learning algorithms optimize lead 
compounds by predicting their bioavailability, toxicity, and other crucial parameters. This 
accelerates the drug development timeline and minimizes the resource-intensive aspects of 
experimental trial and error [9]. AI and ML methodologies propel the era of precision 
medicine in cancer treatment by analysing patient-specific data, including genetic profiles, 
clinical history, and treatment responses [10]. This analytical prowess tailors therapeutic 
regimens for individual patients by predicting responses and stratifying populations based 
on molecular characteristics [11]. 
 
While the integration of AI and ML in anticancer drug discovery holds immense promise, 
certain challenges, such as data quality, model interpretability, and the need for large, diverse 
datasets, necessitate meticulous consideration. Ongoing collaboration between computational 
biologists, pharmacologists, and clinicians is imperative to fully unlock the potential of these 
technologies and translate ground-breaking discoveries into clinically meaningful outcomes 
[12]. The evolving landscape of AI and ML applications in anticancer drug discovery provides 
a glimpse into a future where precision and efficiency converge, redefining the boundaries of 
therapeutic innovation. 
 
This paper explores the integration of artificial intelligence (AI) in anticancer drug discovery, 
focusing on its potential and current challenges. While AI has shown promise, gaps exist in 
predicting complex drug combinations and ensuring the practical application of research 
findings in clinical settings. The novelty of this work lies in proposing advanced AI models 
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for predicting drug combinations, emphasizing the need for interpretable models, and 
advocating for collaborative efforts to validate and implement AI solutions in clinical 
oncology. This research aims to address these gaps and contribute to the effective utilization 
of AI in anticancer drug discovery. 
 

2. Stages of anticancer drug discovery  
 
Drug discovery is a complex process encompassing various stages such as target 
identification, synthesis, characterization, screening, and efficacy assays (Figure 1). The 
timeline for developing a single drug molecule, from discovery to market availability, 
typically spans 12 to 15 years [13].The initial step involves identifying a target, achieved 
through data mining using bioinformatics, genetic association, expression profiling, pathway 
and phenotypic analysis, and functional screening [14]. Target validation is crucial, involving 
structural activity relationship (SAR) studies, generating drug-resistant mutants, and 
manipulating target genes through techniques like genetic manipulation, antibody 
interactions, chemical genomics, and viral transfection [15]. Chemical leads, meeting criteria 
of stability, feasibility, and drug-like activity, undergo a drug ability assessment to evaluate 
target binding and pharmacokinetics [16].  

 

 
Figure 1: Stages of drug discovery. 
 
Lead optimization, the final step in early-stage drug discovery, entails iterative synthesis and 
characterization to understand the relationship between chemical structure and activity [17]. 
Researchers use DMPK (Drug Metabolism and Pharmacokinetics) screens to predict in vivo 
pharmacokinetics and enhance drug potency and safety profiles [18]. Automated screening 
systems, MALDI imaging, and NMR Fragment-based Screening play pivotal roles in 
evaluating drug candidates [19].  
 
Preclinical testing involves assessing safety and efficacy in animals through general 
pharmacology and toxicology studies [20]. Pharmacokinetic studies provide insights into 
absorption, distribution, metabolism, and excretion, while toxicological studies, conducted in 
vitro and in vivo, evaluate the drug's toxic effects. An Investigational New Drug application is 
filed with the FDA before commencing clinical research [21].  
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2.1. Clinical trials progress through phases  
 
Phase 0 involves sub-therapeutic doses for pharmacokinetic data; Phase 1 assesses safety in 
healthy volunteers; Phase 2 evaluates drug efficacy in larger patient groups; and Phase 3 tests 
on a larger scale to prove action benefits. Phase 4 trials occur post-FDA approval, assessing 
real-world efficacy, cost-effectiveness, and safety [22–24]. To market a drug, a New Drug 
Application (NDA) is submitted, encompassing preclinical data to Phase 3 trial results. FDA 
review takes 6 to 10 months, and if the drug is deemed safe and effective, prescribing 
information is upgraded. Phase 4 trials are conducted post-approval to assess real-world 
impact [25]. 
 

3. AI in Biological data analysis 
 
Big Data, characterized by its immense volume and complexity, has become a transformative 
force in drug discovery, drawing insights from diverse disciplines such as chemistry, 
pharmacology, and bioassays. The integration of Artificial Intelligence (AI) into this domain 
has ushered in a new era, alleviating human workloads and expediting target achievement 
[26]. 
 
Genome sequencing initiatives yield a plethora of potential target hypotheses, necessitating 
meticulous prioritization [27]. AI contributes significantly to this process by refining 
computational models in subsequent optimization rounds. This paradigm shift involves 
reasoning, knowledge representation, solution search, and machine learning. For example, 
IBM Watson an AI tool capable of disease detection within a remarkably short timeframe [28]. 
Chu et al., 2019, conducted a study to uncover the ceRNA network in gastric cancer (GC) 
associated with Helicobacter pylori (Hp) infection. By analyzing RNA expression profiles from 
the TCGA database, they compared 20 GC cases with Hp infection to 168 cases without. They 
identified differentially expressed lncRNAs, miRNAs, and mRNAs, constructing a lncRNA-
miRNA-mRNA ceRNA network. Key findings included 32 differentially expressed miRNAs, 
27 lncRNAs, and 257 mRNAs, with 10 miRNAs, 11 lncRNAs, and 219 mRNAs forming the 
ceRNA network. GO and KEGG pathway analyses revealed significant roles in extracellular 
exosomes and the P13K-Akt signaling pathways. PPI network analysis highlighted six hub 
genes: NTS, APOC3, OTX2, KRT13, CALCA, and GNG4. Survival analysis linked four 
lncRNAs and four miRNAs to overall survival in Hp-positive GC patients. Real-time PCR 
confirmed higher levels of specific lncRNAs in Hp-positive cases [29].  
 
Further, Umar et al., 2023, explored the potential of Albizia lebbeck methanolic (ALM) extract 
in combating breast cancer metastasis. The study investigated the phytochemical 
compositions and the cytotoxic, anti-proliferative, and anti-migratory effects of ALM extract 
on MDA-MB 231 and MCF-7 human breast cancer cells. The researchers employed artificial 
neural networks (ANN), adaptive neuro-fuzzy inference systems (ANFIS), and multilinear 
regression analysis (MLR) to predict cell migration in response to various extract 
concentrations. While lower concentrations (10, 5, 2.5 μg/mL) showed no significant impact, 
higher concentrations (25, 50, 100, 200 μg/mL) significantly inhibited cell proliferation and 
motility (p<0.05; n≥3). The study revealed that both traditional MLR and AI-based models 
effectively predicted metastasis in the cancer cells [30]. 
 
In drug discovery, AI plays a pivotal role, across virtual screening to Quantitative Structure-
Activity Relationship (QSAR) modelling, expediting drug design and reducing costs (Figure 
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2). The digitalization of pharmaceutical data has facilitated AI's capacity to handle large 
datasets with enhanced automation, promising a transformative impact on societal work 
cultures [31]. Rehman and Najmi 2023, investigated potential inhibitors for the Epidermal 
Growth Factor Receptor (EGFR), relevant in treating cancers like non-small cell lung cancer 
(NSCLC) and breast cancer. They screened 2734 FDA-approved compounds for EGFR kinase 
inhibition, selecting the top 30 based on binding affinity scores.  
 
The strongest potential of compounds indicating it could lead to new EGFR kinase inhibitors, 
highlighting the effective use of computational methods in drug discovery [32]. Mellado et al., 
2022, addressed the limited efficacy of traditional chemotherapy for neuroblastoma, a 
common cancer in infants, by developing new compounds with enhanced activity and 
selectivity. The study synthesized 21 chalcones and evaluated their antiproliferative activity 
against the neuroblastoma cell line SH-SY5Y. Using three-dimensional quantitative structure–
activity relationship models with high statistical values (q2 > 0.7; r2 > 0.8; r2pred > 0.7), they 
identified promising candidates based on IC50 and selectivity index data. Further, they 
designed and synthesized 16 new molecules, three of which exhibited higher selectivity 
indexes than reference drugs 5-fluorouracil and cisplatin. These three compounds also 
demonstrated significant proapoptotic effects, indicated by increased caspase 3/7 activity, 
altered Bcl-2/Bax mRNA levels, and DNA fragmentation [33]. 
 

 
Figure 2: AI and machine learning methods in advancing drug design. 
 
Functional genomics has witnessed a remarkable transformation due to AI, offering 
innovative solutions to unravel intricate gene-function relationships. Machine learning 
algorithms analyse extensive genomic datasets to predict gene functions, leveraging diverse 
biological data sources like gene expression profiles and protein-protein interactions [34]. 
Deep learning models, such as convolutional neural networks, excel in identifying regulatory 
elements within the genome, enhancing our understanding of gene functions and regulatory 
mechanisms [35]. An exemplary case involves the utilization of NCI's CellMiner Cross 
Database and Lantern Pharma's RADR® platform, showcasing the effectiveness of AI and 
machine learning in elucidating biological insights and identifying potential indications for 
specific drugs. Multi-omics analysis, a cornerstone of precision medicine, demands the 
profiling and interpretation of various omics data types at an individual level [36]. AI proves 
instrumental in constructing models for non-canonical data analysis, addressing the fast-
growing landscape of multi-omics data [37]. This interdisciplinary endeavor requires 
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collaboration between biologists and computer scientists, with AI offering advanced 
analytical methods and predictive capabilities [38]. 
Machine learning, a subset of AI, involves training algorithms using a significant portion of 
the dataset, followed by validation with the remaining data [39]. Supervised learning maps 
input data to output using labelled examples, while unsupervised learning operates through 
reinforcement. Integrating multi-omics data involves model-based, concatenation-based, and 
transformation-based approaches [40]. Researchers spend countless hours searching for 
relevant literature and sifting through various data sources to assemble information relevant 
to a particular research question. AI will eventually solve this problem by collecting and 
assembling this data using text mining, semantic analysis, and missing link prediction [41]. 
 
AI and ML are being applied to infectious diseases, such as COVID-19, to improve control, 
forecasting, and treatment. Supercomputing models can help us understand the potential of 
AI in epidemiology [42]. AI infrastructure is growing, but there are still challenges such as 
limited computational input/output capability and ethical implications [43,44]. 
 

4. Target Identification and Validation 
 
In the domain of Target Identification and Validation, Artificial Intelligence (AI) has emerged 
as a potent tool for predicting drug-target interactions and assessing their binding affinity 
[45]. Various machine learning (ML) and deep learning (DL) methodologies, including 
KronRLS, SimBoost, DeepDTA, PADME, DeepAffinity, and MANTRA, have been leveraged 
to elucidate Drug-Target Binding Affinity (DTBA) [46]. Furthermore, unsupervised ML 
techniques such as PREDICT offer the capability to prediction the therapeutic efficacy of drugs 
and target proteins. AI-driven tools like XenoSite, FAME, and SMARTCyp play pivotal roles 
in delineating drug metabolism sites [47,48]. McInerney et al., 2022, explored new therapeutic 
targets for glioblastoma (GBM), a challenging adult brain tumor with limited treatment 
options. They investigated the role of the isocitrate dehydrogenase 1 (IDH1) enzyme, which 
is overexpressed in GBM. Using artificial intelligence and evolutionary algorithms, they 
analyzed IDH1-wildtype gliomas from the TCGA LGG-GBM cohort, identifying 90 genes 
associated with IDH1 expression. These genes were involved in key pathways such as 
ubiquitin-mediated proteolysis, focal adhesion, mTOR signaling, and pyruvate metabolism. 
The study also found potential prognostic and diagnostic biomarkers, like TSPYL2 and 
MINK1, which could be linked to glioma progression and patient outcomes. These insights 
reveal metabolic vulnerabilities and suggest new therapeutic targets, paving the way for 
future clinical trials aimed at improving treatment for GBM patients [49]. 
 
Identifying drug-target interactions (DTI) is a pivotal step in anticancer drug design, 
significantly impacting drug development and lead compound discovery. Computational 
methods, including molecular docking simulations and machine learning-based approaches, 
aid in accurate DTI predictions (Figure 2) [50]. Choosing drug targets is equally crucial, and 
recent advancements, such as the KG4SL graph neural network model, address targeted drug 
synthesis challenges [51]. Integrating multiple data types through AI-powered methods like 
BANDIT, DDR, KG4SL, and Drugnome AI enhances predictive power [52]. The identification 
of therapeutic targets for anticancer drugs, screening for hit compounds is imperative. High-
throughput screening methods, such as structure-based and ligand-based screening, play a 
key role [53]. Wang et al., 2022, explored the transformative impact of artificial intelligence on 
biomedical research, particularly in drug discovery, by developing a robust predictive tool for 
drug–target interactions (DTIs). Recognizing the high costs, lengthy timelines, and low 
success rates associated with traditional DTI methods, the study introduced MSPEDTI, a 
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deep-learning-based model that combines drug structure and protein evolutionary 
information. The model employs a convolutional neural network (CNN) to uncover hidden 
features and an extreme learning machine (ELM) to predict DTIs with high accuracy. In cross-
validation experiments, MSPEDTI achieved prediction accuracies of 94.19% for enzymes, 
90.95% for ion channels, 87.95% for G-protein-coupled receptors (GPCRs), and 86.11% for 
nuclear receptors. The model's effectiveness was further validated in ablation studies and 
comparisons with other methods. Additionally, 7 out of 10 potential DTIs predicted by 
MSPEDTI were confirmed by classical databases, demonstrating the model's reliability in 
identifying drug candidate targets and advancing drug repositioning and development [54]. 
Virtual screening, facilitated by deep learning models predicting docking scores, identifies 
molecules with strong binding affinity for target proteins. Fragment-based drug design, 
particularly with the POEM method, addresses rational fragment ligation in pockets, 
advancing drug discovery [55]. Recent years have seen the systematization of drug discovery 
through high-throughput screening and combinatorial chemistry (Table 1). Fragment-based 
drug design has gained prominence, and methods like POEM enable rational fragment 
ligation [56]. De novo drug design and virtual screening, leveraging variational auto-
encoders, recurrent neural networks, generative adversarial networks, and deep 
reinforcement learning, contribute to generating and optimizing molecules [57]. Drug 
repositioning, a research focus, utilizes AI-based methods for predicting drug-target and 
drug-disease interactions, offering frameworks like GPSnet, DeepDRK, MTRD, SNF-NN, 
MBiRW, DR-HGNN, and GDRnet [52].  
 
AI techniques extend to predicting drug reactions, encompassing aspects like Caco-2 
permeability, carcinogenicity, blood-brain barrier permeability, and plasma protein binding. 
The development of anticancer drugs, such as REC-2282 and RLY-4008, through AI platforms 
underscores the transformative impact on drug discovery. BPM 31510, EXS-21546, and PHI-
101 are examples of AI-designed drugs, showcasing their potential in optimizing the research 
paradigm [52,53, 55-58].  
 
Convolutional Neural Networks (CNNs) are a class of neural networks widely utilized in the 
analysis of visual imagery. One prominent application of CNNs is in predicting drug-target 
interactions, where the DTI-CNN model, integrating Random Walk with Restart (RWR) and 
Denoising Autoencoder (DAE), plays a pivotal role [59,60]. This model constructs a 
heterogeneous network that combines various sources of drug and protein-related 
information. The DAE component aids in extracting low-dimensional representations of the 
complex features associated with drugs and proteins within the network [61]. 
 
DeepCPI, a tool based on an innovative framework, employs deep learning techniques and 
unsupervised representation learning to forecast drug-protein interactions. It utilizes methods 
such as latent semantic analysis and Word2Vec to learn compact feature representations of 
compounds and proteins [62,63]. Recent advancements in deep learning algorithms have 
shown remarkable progress in predicting Drug-Target Binding Affinity (DTBA) compared to 
traditional machine learning methods. These advanced algorithms leverage diverse input 
data, including SMILES, LMCS, ECFP, or combinations thereof, as features for drugs [64,65]. 
Leading the DTBA prediction methodologies is DeepDTA, utilizing SMILES for drug input 
data and employing a CNN with three 1D convolutional layers and max-pooling functions to 
discern latent features [66,67]. WideDTA, another CNN DL model, differs by representing 
ligand SMILES and protein sequences as sets of words rather than full-length sequences [68]. 
Deep Affinity, a deep learning (DL) model for predicting Drug-Target Binding Affinity 
(DTBA), utilizes the Simplified Molecular Input Line Entry System (SMILES) for drug 
representation. It employs a Recurrent Neural Network (RNN) model to encode structural 
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property sequence representations, resulting in superior accuracy compared to other machine 
learning (ML)-based methods [63]. In the field of drug discovery, DeepBAR, a DL-based tool 
for predicting binding affinity, represents a convergence of chemistry and machine learning. 
By employing the Bennett acceptance ratio method, DeepBAR accurately calculates binding 
free energy, thereby significantly enhancing the drug discovery process [69]. Reinforcement 
Learning for Structural Evolution (ReLeaSE) introduces a deep reinforcement learning (RL) 
approach to design chemical libraries with desired properties. This method consists of two 
Deep Neural Networks (DNNs): a generative model for producing chemically feasible novel 
molecules and a predictive model estimating the generative model's performance [70,71]. 
 
Deep Scaffold, a scaffold-based molecular generative model, as described by Nag et al., 2022, 
contributes significantly to addressing various drug design challenges. It assists in generating 
compounds with predefined scaffolds and facilitates de novo drug design for potential 
candidates. This AI-driven scaffold approach empowers medicinal chemists with large-scale 
diversification capabilities, accelerating drug design processes [67,69]. DeepVS, introduced by 
Pereira et al., 2016, leverages deep learning techniques to enhance docking-based virtual 
screening. By creating distributed vector representations of protein-ligand complexes using 
atom and amino acid embeddings, DeepVS improves screening accuracy and efficiency 
[72,73]. The AI-based virtual screening tool, SIEVE score, identified by Sarkar et al., 2023, 
surpasses conventional methods in terms of efficacy, offering enhanced performance for drug 
discovery initiatives [74]. Moreover, according to Jimenez-Carretero et al., 2018, Tox_(R)CNN 
utilizes deep learning algorithms to detect cytotoxicity from microscopic images, even 
without specific toxicity labeling, thereby proving invaluable for in vitro toxicity assessments 
[75]. Furthermore, Trials.ai, leverages Natural Language Processing (NLP) and other AI 
techniques to facilitate the design of clinical trial protocols, streamlining the trial process and 
enhancing efficiency. Lastly, AICURE, as highlighted by Miller et al., 2019, provides an AI-
based platform for clinical trials, enabling participants to record medication videos. By 
analyzing facial expressions to monitor treatment responses, AICURE offers a novel approach 
to clinical trial monitoring, potentially revolutionizing patient care and trial outcomes [76]. 
Andreeva et al., 2021, addressed the challenges in diagnosing and treating non-melanoma 
skin cancer by exploring the use of fluorescence spectroscopy (FS) combined with deep 
learning (DL) algorithms. Traditional histological examination, the current gold standard, is 
invasive and time-consuming. In this study, 137 patients with various forms of basal cell 
carcinoma (BCC) were examined using a multispectral laser-based device equipped with a 
neural network (NN) called "DSL-1". The FS technique measured and compared the 
fluorescence spectra of suspected cancerous and normal skin tissues. These spectra were then 
analyzed using DL algorithms to classify the skin conditions as normal, pigmented normal, 
benign, or BCC. The AI-driven FS diagnostic method demonstrated an average sensitivity of 
62% and specificity of 83% for predicting BCC lesions. This study suggests that the "DSL-1" 
diagnostic device could be a practical, real-time tool for diagnosing and guiding the resection 
of non-melanoma skin cancer, offering a less invasive and quicker alternative to traditional 
methods [77]. Further, Shukla et al., 2022, presented an advanced system for the automated 
detection and segmentation of liver tumors and hepatic lesions in magnetic resonance 
imaging (MRI) using innovative 3D affine invariant and shape parameterization approaches. 
This system addresses the variability in lesion characteristics across patients, imaging 
equipment, and lesion timing, which pose challenges in liver cancer staging. The proposed 
method uses geodesic active contour analysis to isolate the liver region, followed by 
segmentation using Cascaded Fully Convolutional Neural Networks (CFCNs). This approach 
minimizes error rates during training by leveraging segmented tumor areas. The system 
achieved an impressive accuracy of 94.21% in liver tumor analysis with a computation time 
of under 90 seconds per volume. Validation using the 3DIRCAD dataset confirmed a high 
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overall accuracy rate of 93.85% across various volumes, demonstrating the efficacy and 
reliability of this automated method for liver cancer analysis [78]. 
In the fight against COVID-19, companies like Deargen and Benevolent AI utilize deep 
learning to identify potential drug leads. Deargen predicts interaction strength between drugs 
and target proteins, identifying Atazanavir as a promising candidate [79,80]. Benevolent AI 
accelerates research using biomedical data and ML, pinpointing six drugs with potential to 
impede SARS-CoV-2 viral replication [81]. In dermatology, the proliferation of skin cancer 
smartphone apps, utilizing AI, allows for immediate risk assessment and tailored 
recommendations for patients, aligning with the advancements in both medical science and 
AI technologies [82,83]. However, it is important to note that while AI greatly optimizes 
anticancer drug research, it comes with limitations, including high data dependence and 
limited explainability. Generative models like Variational Auto-Encoders (VAE), Recurrent 
Neural Networks (RNN), and Generative Adversarial Networks (GAN) play vital roles in 
generating molecules with specific properties [52,84]. Various drug generation models, 
including deep reinforcement learning, ReLeaSE, and MoleGuLAR, highlight the dynamic 
landscape of AI in drug discovery [85,86]. 
 
Table 1: Anticancer drug target identification methods using artificial intelligence. 

 

S.no Method Model Application References 

1 Deep Learning   
Convolutional Neural 
Networks   

Analyzing genomic data, predicting 
drug targets 

[87] 

2 
Support Vector 
Machines  

SVM 
Classifying cancer subtypes based 
on gene expression 

[88]  

3 Random Forest  
Ensemble of Decision 
Trees    

Predicting drug responses, 
identifying biomarkers 

[89] 

4 Neural Networks   Multilayer Perceptron   
Analyzing protein-protein 
interaction networks 

[90,91]  

5 
Network-Based 
Approaches   

Graph Neural Networks  
Analyzing protein-protein 
interaction networks 

[92,93] 

6 
Feature Selection 
Methods  

Various (e.g., Relief, 
MIFS)  

Identifying relevant biomarkers and 
features 

[94,95]  

7 Bayesian Networks  
Probabilistic Graphical 
Models  

Modeling probabilistic relationships 
in biological data 

[96,97] 

8 Transfer Learning  
 Pre-trained models (e.g., 
BERT) 

Biomedical Literature  [97,98] 

9 
Evolutionary 
Algorithms   

Genetic Algorithms  Analyzing drug Sensitivity Data  [99] 

 
5. AI-Driven Molecular Design 
 
AI-driven molecular design has sparked a revolutionary transformation in drug discovery 
and material design, empowering researchers to optimize molecular structures and properties 
and explore previously uncharted territories [89]. In contrast to traditional empirical trial-and-
error methods, which were both time-consuming and resource-intensive, AI models have 
redefined molecular design by predicting properties, unravelling complex structure-activity 
relationships, and efficiently screening vast compound libraries [100]. 
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Figure 3: Overview of lead optimization tools in drug discovery. 

 
Central to AI-driven molecular design is the adept representation and encoding of molecular 
structures. Graph-based neural networks, for instance, provide deeper insights into structure-
activity relationships, enhancing predictive accuracy (Figure 3) [101]. Quantum mechanics-
based models integrate the precision of quantum mechanics with the efficiency of AI to 
predict molecular energies, geometries, and spectra [102]. AI algorithms, surpassing 
traditional compound libraries, efficiently explore chemical space, often leading to the 
discovery of novel regions [103,104]. Latha et al., 2023, utilized Artificial Intelligence (AI) to 
enhance drug design and development in the pharmaceutical industry, specifically targeting 
the treatment of breast cancer. Their focus was on generating new inhibitors with high efficacy 
and minimal side effects compared to Tamoxifen, a commonly used Selective Estrogen 
Receptor Modulator (SERM) known for its adverse effects like bone pain, nausea, and hot 
flashes. Using an AI-based Virtual Screening (VS) method with a Generative Neural Network 
(GNN) model, they identified potential drug-like inhibitors. These inhibitors were evaluated 
for physicochemical properties, pharmacokinetics, and toxicity to confirm their drug-likeness. 
Molecular docking studies with DNA and protein were conducted to assess binding affinity 
and predict intermolecular interactions. The inhibitor M22 (methyl 2-[(2-benzoylphenyl) 
carbamoyl] benzoate) exhibited a significantly lower free energy of binding and inhibition 
constant compared to Tamoxifen, indicating higher efficacy. M22’s structure, featuring three 
benzene rings, extended conjugation, and amide linkage, contributes to its potent inhibitory 
potential [105]. In another study, Molyneaux et al., 2023, investigated therapeutic strategies 
targeting PTPmu, a receptor protein tyrosine phosphatase involved in cell adhesion and 
signaling, which is downregulated in glioblastoma. Utilizing the AtomNet® platform, a deep 
learning neural network for drug discovery, they screened millions of compounds to identify 
76 candidates likely to interact with PTPmu's critical extracellular domains. These candidates 
were tested in cell-based assays for PTPmu-mediated cell aggregation and glioma sphere 
growth. Four compounds inhibited cell aggregation, six inhibited glioma growth, and two 
were effective in both assays. The most potent compound inhibited glioma sphere formation 
at concentrations as low as 25 micromolar and directly interacted with PTPmu fragments. This 
study highlights a promising compound for further development as a PTPmu-targeting 
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cancer therapy, particularly for glioblastoma [106]. Further, Goswami and Sharma et al., 2023, 
explored the potential of deep learning-enabled computational design in identifying ligands 
targeting Estrogen Receptor Beta (ERβ) for breast cancer treatment. Their study underscores 
the role of ERβ in antagonizing ERα, thereby inhibiting the expression of growth-promoting 
genes like cyclin D1, cyclin A, and c-myc in breast tissues. Leveraging advanced technologies 
such as high-throughput screening (HTS), molecular simulations, and computer-aided drug 
design, the researchers utilized Biovia Discovery Studio and PyRx software for drug analysis. 
Using computerized pharmacophore modeling, they synthesized approximately 40 drug 
ligands. Through docking studies and deep learning algorithms in PyRx, they assessed 
ligand-protein interactions and binding affinities. The research demonstrated that deep 
learning algorithms, unlike traditional scoring functions, can predict complex associations, 
enhancing binding affinity predictions. Subsequent SwissADME, bio radar, Lipinski's rule, 
and Protox analyses confirmed the drug-likeness and efficacy of the synthesized ligands [107]. 
The integration of Deep Learning (DL) into small molecule design, renowned for its 
achievements in speech and image recognition, has addressed limitations in traditional 
techniques [108,109]. Notably, the Chemistry42 platform developed by in-silico Medicine 
stands as a prime example of DL's application in driving drug discovery. This platform 
seamlessly combines advanced generative AI algorithms with expertise in medicinal and 
computational chemistry, following industry best practices [110]. Chemistry42 enables the 
user-friendly creation of generative experiments tailored to ligand or structure-based drug 
design workflows. Leveraging a suite of proprietary generative models such as autoencoders, 
Generative Adversarial Networks (GANs), flow-based approaches, evolutionary algorithms, 
and language models, Chemistry42 operates across diverse molecular representations, 
encompassing string-based, graph-based, and 3D-based structures. Moreover, the platform 
dynamically evaluates generated structures using reward and scoring modules, integrating 
multiple scores and in-house Medicinal Chemistry Filters (MCFs) to ensure the quality and 
relevance of the candidates. Synthetic accessibility is assessed through the Retrosynthesis 
Related Synthetic Accessibility (ReRSA) score, while structural diversity is monitored using a 
custom similarity function, thereby facilitating comprehensive and efficient small molecule 
design processes [111]. 
 
Moreover, Chemistry42 integrates modules such as ConfGen for conformational ensembles, 
3D-Descriptors for evaluating 3D similarity, Pharmacophore for assessing matches with 
specified hypotheses, and Shape Similarity for evaluating 3D-shape similarity. The platform's 
effectiveness is highlighted by the success of the GENTRL model in generating experimentally 
validated potent DDR1 kinase inhibitors [112,113]. Beyond small molecules, AI has also 
impacted protein structure prediction. AlphaFold2 generated 3D protein structures have been 
utilized in a Structure-Based Drug Design (SBDD) case study, demonstrating successful 
design and optimization of Cyclin-Dependent Kinase 20 (CDK20) inhibitors [114]. 
 

6. Optimizing Lead Compounds: Predicting Bioavailability and 
Toxicity 
 
In the realm of optimizing lead compounds, the utilization of chemical and pharmacological 
resources has become indispensable for efficient drug discovery. Only a small fraction of the 
vast array of medicinal chemistry-accessible compounds has been synthesized and tested, 
necessitating the reliance on major databases such as ChEMBL and PubChem [115]. These 
repositories house chemical data on small molecules and experimentally determined 
bioactivities, including information on absorption, distribution, metabolism, excretion, and 
toxicity [116]. For a comprehensive understanding of molecular structures, the Protein Data 
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Bank (PDB) serves as a vital resource, providing a repository of 3D structures of proteins and 
small molecules [117]. The wealth of data contained in ChEMBL, PubChem, and PDB supports 
researchers in elucidating the role of mutations in diseases and informs structure-based drug 
design (Figure 2) [118]. Generative AI models play a pivotal role in creating novel compounds 
by learning from extensive datasets. Leveraging techniques like variational autoencoders and 
generative adversarial networks, these models seamlessly integrate into existing molecular 
design pipelines [119]. Through AI-driven simulations and algorithms, structure-based 
design can be employed to craft molecules with enhanced properties, augmenting the creative 
process in drug discovery [120]. In a study, Kurniawan et al., 2023, investigated the potential 
of indenopyrazole derivatives as anti-cancer drugs using advanced computational methods. 
The study involved 93 indenopyrazole derivative compounds, each with 1876 descriptors. To 
identify the most relevant features, the Pearson Correlation Coefficient (PCC) was initially 
used to reduce the descriptors, followed by the Ant Colony Optimization (ACO) algorithm, 
which narrowed them down to ten key descriptors. An Artificial Neural Network (ANN) 
prediction model was then developed with three different architectures varying in the number 
of hidden layers. The model with three hidden layers demonstrated the best performance, 
achieving R² values of 0.8822 for the test set, 0.8495 for the training set, and a Q² train value of 
0.8472. This study highlights the efficacy of combining ACO and ANN for predicting the anti-
cancer potential of indenopyrazole derivatives, paving the way for more targeted and efficient 
drug development [121]. Czub et al., 2023, developed an AI-based system to improve the 
prediction of drug permeability, which is crucial for the absorption of oral medications. 
Focusing on APIs with serotonergic activity, the study addressed the complexities and data 
limitations of predicting intestinal absorption. By combining classification and regression 
models, the researchers created a hierarchical system that accurately identifies highly 
permeable molecules. The system achieved high prediction accuracy, correctly selecting 38% 
of highly permeable molecules without any false positives [122]. 
 
AI models extend their utility to predicting molecular interactions, elucidating binding 
mechanisms, and unravelling complex molecular processes. This predictive capability 
empowers researchers to design molecules with tailored properties, accelerating the 
understanding of intricate structure-property relationships [123]. The development of 
interpretable AI models, feature importance analysis, and model visualization tools becomes 
imperative to foster trust and facilitate seamless integration into molecular optimization 
workflows. 
 
As AI-driven molecular optimization progresses, considerations about safety, unintended 
consequences, and long-term effects become paramount. Striking a balance between 
innovation and responsible stewardship is crucial to ensure ethical and sustainable progress 
in this field [124]. AI-powered innovation has not only contributed to the discovery of new 
materials with enhanced properties but has also optimized catalyst structures, showcasing its 
versatility across domains (Figure 3). AI-guided synthesis planning and property prediction 
have the potential to design molecules with desirable properties, reducing experimental waste 
and expediting the development of eco-friendly materials and drugs [125].  
 
Quantitative Structure-Activity Relationship (QSAR) modelling, employing machine learning 
algorithms, emerges as a valuable tool to predict various properties, guiding researchers 
toward the most promising compounds early in the optimization process [126]. This 
transformative impact of AI algorithms in drug discovery and material design is underscored 
by their ability to make informed decisions, leveraging diverse data sources, including 
experimental data, molecular simulations, and chemical databases. Such an interdisciplinary 
approach enriches the quality of predictions and facilitates a comprehensive exploration of 
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molecular optimization strategies [127]. Hou et al., 2018, have identified Matrix 
metalloproteinase-9 (MMP-9) as a promising target for cancer therapy. Their study involved 
constructing and validating a 3D QSAR pharmacophore model for MMP-9 inhibitors. This 
model includes four essential chemical features: two hydrogen bond acceptors (HBA), one 
hydrophobic (HY), and one ring aromatic (RA). The model's reliability was thoroughly 
validated, highlighting the significance of HY and RA features for their influence on the 
interaction with the S1′ pocket of MMP-9, which is crucial for inhibitor selectivity. By 
integrating the pharmacophore model with molecular docking, the researchers conducted 
virtual screening to identify selective MMP-9 inhibitors from natural products. This approach 
led to the discovery of four potential selective MMP-9 inhibitors. Bioassay experiments with 
one of these inhibitors demonstrated strong inhibitory activity, with an IC50 value of 26.94 
µM. Further validation using quantum mechanics/molecular mechanics (QM/MM) 
calculations and molecular dynamics simulations confirmed the predicted binding modes. 
Additionally, an assessment of ADMET properties for the four natural product inhibitors 
indicated their promise as candidates for future structural modifications and optimizations 
[128,129]. ADMET, which stands for Absorption, Distribution, Metabolism, Excretion, and 
Toxicity, plays a pivotal role in the early phases of anticancer drug discovery [130]. As an 
integral component of drug development, the study of ADMET properties encompasses an 
array of critical evaluations, each bearing profound implications for the success and safety of 
potential anticancer agents [131].The assessment of a drug's absorption properties delves into 
how efficiently it can enter the bloodstream, which is essential for achieving therapeutic 
concentrations at the target site [132]. The distribution stage investigates the drug's journey 
throughout the body, including its ability to access tumor sites. Understanding the drug's 
metabolism is crucial as it can influence both its efficacy and potential for adverse effects. 
Excretion studies shed light on the removal of the drug and its metabolites from the body, 
impacting drug duration and dosage [133]. Perhaps most crucially, toxicity assessments 
unveil the potential adverse effects a compound might induce, an aspect that necessitates 
careful scrutiny to ensure the well-being of patients. Collectively, an in-depth exploration of 
ADMET properties significantly enhances the efficiency and safety of the drug discovery 
process, thereby offering promise for the development of effective and well-tolerated 
anticancer therapies [134]. 
 
In the realm of predicting toxicity, AI-based approaches such as LimTox, pkCSM, admetSAR, 
and Toxtree are instrumental. As well, SEA, eToxPred, TargeTox, and PrOCTOR are 
employed for safety target prediction. The Tox_(R) CNN model evaluates the cytotoxicity of 
drugs exposed to DAPI-stained cells. These tools contribute to the prediction of potential toxic 
effects, enhancing the safety assessment of drug molecules during the optimization process 
[75]. 
 

7. Repurposing Existing Drugs 
 
Drug repurposing, a strategic approach to identify new therapeutic purposes for approved 
drugs beyond their original use, presents significant advantages, particularly in expediting 
the discovery process [135]. Advanced translational bioinformatics technologies, such as 
artificial intelligence (AI) and technology-based approaches, offer promising avenues for 
enhanced cancer management through the discovery and efficacious use of repurposed drugs 
[136]. Machine learning algorithms, categorized into supervised, unsupervised, and 
reinforcement learning techniques, play a crucial role in predicting trends and correlations 
from user-generated data. These algorithms eliminate the need for explicit programming, 
providing a versatile tool for various applications, including drug repurposing [137].  
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AI-based algorithms excel in predicting and generating molecular surface contact 
fingerprinting, shedding light on repurposed drug-protein interactions. Furthermore, these 
models contribute to patient-centric drug repurposing strategies [58]. Network medicine, 
integrating systems biology and disease gene networks, emerges as a potent computational 
tool for identifying and ranking drug candidates suitable for repurposing in cancer therapy 
[138]. 
 
In recent years, computational approaches, including machine learning and artificial 
intelligence algorithms, along with deep learning models, have been developed to systematize 
the drug repurposing process. Noteworthy examples include Axitinib, an endothelial growth 
factor receptor inhibitor initially approved for renal cell carcinoma, demonstrating 
unexpected activity in chronic myeloid leukaemia and acute lymphoblastic leukaemia cells. 
However, challenges arise when additional compound mutations emerge, affecting Axitinib's 
potency in BCR-ABL1 [139]. Rao et al., 2023, addressed the high failure rate in drug discovery 
by developing a computational framework to repurpose existing drugs. This framework 
combines AI/machine learning and chemical similarity-based methods with cross-species 
transcriptomics to predict drug–target interactions. Analyzing 2766 FDA-approved drugs, the 
study identified 27,371 off-target interactions involving 2013 protein targets, averaging 
around 10 interactions per drug. Notably, 63% of these predicted interactions were confirmed 
in vitro, with many showing strong binding affinities. This approach highlights the potential 
for repurposing existing drugs for new therapeutic applications, offering a promising strategy 
to enhance the efficiency and success rate of drug discovery [140]. 
 
Publicly available drug-target activity resources play a pivotal role in training supervised 
machine learning models for in-silico off-target predictions and drug repurposing. These 
resources, categorized by the type of activity data they contain, contribute to the 
computational exploration of drug repurposing possibilities [141]. Pathways, elucidating 
cellular responses to drugs, prove valuable in drug repurposing efforts. Various databases 
representing biological pathways may yield diverse results in statistical target pathway 
enrichment analysis, emphasizing the need for careful consideration in these analyses [142]. 
To expedite the identification of drug-target interactions (DTIs), computational approaches, 
such as orthogonal drug-target space deconvolution, crowd-sourcing-based AI and ML 
methods, and pairwise multi-kernel learning, have been developed. Methods like 
convolutional network models, deep neural network models, and multi-label learning 
frameworks enhance the prediction of DTIs, offering novel leads for drug repurposing 
[118,143]. 
 
Molecular docking, a widely used in-silico method, meets challenges when target protein 3D 
structures are unresolved. AI emerges as an accurate approach for predicting protein 3D 
structures from amino-acid sequences [144]. 
 
After predicting the target activity potential of a drug, its efficacy in a relevant cell context 
must be investigated. Cancer cell line models and patient-derived primary cells serve as 
valuable tools for predictive purposes [145]. Various prediction algorithms have been 
developed to match cancer cell omics features to cell-based drug efficacies. Noteworthy 
methods such as similarity-regularized matrix factorization (SRMF) and pairwise multi-
kernel learning (pairwiseMKL) exhibit superior performance in drug response prediction 
across diverse cancer cell lines [146]. Despite progress, challenges persist in accurately 
predicting drug efficacy, particularly in identifying predictive multi-omics features and 
determining tissue-specific drug efficacy. Addressing these challenges requires a meticulous 
understanding of patient response data, experimental noise, and the intricate dynamics of 
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cancer patients. The pursuit of accurate tissue-specific drug efficacy predictions remains an 
ongoing area of refinement in drug repurposing efforts [147,148]. 
 

8. AI in Cancer Imaging 
 
Artificial intelligence (AI) has emerged as a transformative force in optimizing and 
streamlining clinical workflows, significantly impacting cancer imaging. Within this realm, 
AI plays a pivotal role in the detection, characterization, and monitoring of tumours. 
Detection tools based on AI reduce observational oversights, acting as an initial screen against 
errors of omission [149]. 
 
Lung cancer, a global leading cause of cancer-related mortality, faces challenges in late-stage 
diagnosis. Current screening methods exhibit limitations, including false positives and over 
diagnosis [150]. AI holds promise in addressing these challenges by reducing false positives, 
accurately distinguishing between benign and cancerous nodules, and enhancing the 
prediction of lung cancer risk. Moreover, AI in medical imaging aids in quantifying intra-
tumor characteristics, such as intratumor heterogeneity, providing real-time 3D phenotypes 
of entire tumors [151,152]. In the context of lung cancer imaging, Artificial Intelligence (AI) 
algorithms have emerged as pivotal tools, tasked with a diverse array of responsibilities 
ranging from enhancing screening programs to detecting, characterizing, and predicting 
therapy response and prognosis [149].  
 
A cornerstone of this approach is radiomics, which leverages sophisticated AI algorithms to 
extract and analyze extensive quantitative metrics from medical images, thereby furnishing 
clinicians with invaluable insights for clinical decision-making [153]. At the heart of radiomics 
lies machine learning (ML), which employs models and algorithms within a theoretical 
framework to automate pattern detection in data, catalyzing advancements in lung cancer 
diagnostics [154].  
 
Recent studies, as highlighted by Cellina et al., 2022, underscore the effectiveness of AI models 
in predicting long-term lung cancer incidence and improving diagnosis accuracy, surpassing 
traditional risk models. Particularly, computer-aided detection (CAD) systems, a significant 
AI contribution to lung cancer screening, depend on training with high-quality datasets to 
achieve optimal performance. Deep learning-based tools for pulmonary nodule detection, 
exemplified by 3D convolutional neural networks (CNNs), demonstrate promising sensitivity 
and specificity, offering enhanced capabilities for early detection and characterization of lung 
nodules [155–157]. 
 
AI's application extends beyond lung cancer to breast cancer imaging. AI-assisted breast 
imaging diagnosis relies on computer-aided detection/diagnosis (CADe/CADx) systems, 
integrating mathematics, statistics, and image processing [158]. Challenges include high false-
positive rates and the need for manual annotation, which impacts repeatability [159]. 
Mammography, ultrasound, and breast MRI are key modalities in breast cancer detection. AI 
models, including convolutional neural networks (CNNs) like VGG16, demonstrate high 
accuracy in detecting breast cancer in mammograms [160].  
 
AI's impact on breast cancer extends to ultrasound, overcoming operator-dependent 
limitations. Elastography improves ultrasound accuracy, and AI recognizes the challenges of 
subjective bias [161]. Breast MRI, the most sensitive imaging method, benefits from DL 
technology integration into the clinical workflow. Nuclear medicine techniques, like 18F-FDG 
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PET/CT, play roles in diagnosis, staging, and treatment response assessment [162,163]. Radio 
genomics, correlating medical imaging features with gene expression pathways, offers 
insights into the molecular basis of lesions [164].  
 
Despite the advancements, challenges persist, including FP rates, the interpretability of AI 
decisions, liability concerns, and limited data on cost-effectiveness. Future developments may 
involve AI algorithms predicting patient outcomes and guiding diagnostic decisions based on 
prior cases. As AI continues to evolve, integrating it with established systems like PACS is 
likely to have a substantial impact on reinforcing its role in radiological diagnosis and patient 
outcome prediction [165,166]. 
 

9. ML Approaches Biomarker Discovery 
 
Machine learning (ML) approaches play a crucial role in biomarker discovery, aiming to 
enhance clinical trial performance, drug differentiation, and understanding drug mechanisms 
[167]. However, the conventional process of biomarker discovery in the later stages of clinical 
trials is both time-consuming and costly [168]. To address this challenge, it is imperative to 
implement, construct, and validate predictive models during the early stages of clinical trials. 
ML algorithms can be effectively utilized to predict translational biomarkers in preclinical 
data, enabling validation and proposing medications for patient indications [169].  
 
MicroRNAs (miRNAs) are small, non-coding RNA molecules consisting of 21-25 nucleotides 
that play a crucial role in post-transcriptional gene regulation, influencing several signaling 
pathways, including Notch, Wnt/beta-catenin, PI3K-Akt, and the epithelial-mesenchymal 
transition (EMT) pathway [170]. The EMT pathway is linked to various malignant behaviours 
such as proliferation, invasion, and metastasis, with miRNAs playing a crucial role in 
controlling the EMT phenotype. Understanding the relationship between EMT-associated 
miRNAs and cancer chemoresistance is essential for both basic and clinical research, 
particularly in cervical cancer (CC), where miRNAs have been associated with 
chemoresistance. Utilizing miRNA-based treatments could be a potential method to overcome 
chemoresistance. One notable advantage of miRNAs is their stability in body fluids like blood, 
urine, and tissue, making them effective biomarkers for human cancers. However, translating 
miRNA-based biomarkers from the laboratory to practical applications remains a challenge, 
despite their potential as biomarkers for pre-cancer diagnosis in humans [171]. 
 
Non-coding RNAs, particularly long non-coding RNAs (lncRNAs) and microRNAs 
(miRNAs), serve as master regulators in the regulation of tumorigenesis. Among them, 
lncRNA NEAT1 has gained significant attention due to its dysregulation in various cancers, 
where it can function as either an oncogene or a tumor suppressor. Evidence indicates that 
NEAT1 is involved in several carcinogenic processes, including proliferation, invasion, 
survival, drug resistance, and metastasis. As such, NEAT1 is considered a biomarker and a 
novel therapeutic target for the diagnosis and prognosis of different cancer types. The critical 
role of NEAT1 in cancer is primarily mediated through its interactions with miRNAs. These 
NEAT1-miRNA regulatory networks are pivotal in tumorigenesis and have garnered 
considerable interest from researchers worldwide [172]. 
 
Hamidi et al., 2021, addressed the challenge of classifying high-dimensional and small-sample 
gene expression data, particularly focusing on miRNAs, which are small non-coding RNAs 
that play significant roles in gene regulation and cancer. The study utilized LASSO and Elastic 
Net feature selection techniques to identify 10 miRNAs differentially regulated in ovarian 
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serum cancer samples compared to non-cancer samples from the publicly available dataset 
GSE106817. The identified miRNAs include hsa-miR-5100, hsa-miR-6800-5p, hsa-miR-1233-
5p, hsa-miR-4532, hsa-miR-4783-3p, hsa-miR-4787-3p, hsa-miR-1228-5p, hsa-miR-1290, hsa-
miR-3184-5p, and hsa-miR-320b. The researchers then implemented advanced machine 
learning classifiers, such as logistic regression, random forest, artificial neural network, 
XGBoost, and decision trees, to construct clinical prediction models. The diagnostic 
performance of these models was evaluated using ROC analysis on both the internal dataset 
(GSE106817) and an external validation dataset (GSE113486). Remarkably, the first four 
prediction models consistently achieved an AUC of 100%, demonstrating their high 
diagnostic accuracy [173]. 
 
In preclinical stages, predictive models and biomarkers are identified, yet only a limited 
number are translated into clinical trials. One of the primary challenges lies in the assessment 
of ML approaches that often focus on community efforts to develop regression and 
classification models. For instance, the US FDA-led MAQC II project evaluated ML algorithms 
in predicting gene expression data during the final stages of clinical trials [174]. Cox regression 
models have been employed to predict patient risk factors based on gene expression 
signatures in diseases like multiple myeloma [175].  
 
Various initiatives, such as the NCI challenge, aim to construct drug predictive models using 
diverse data profiles and regression models, highlighting the role of ML in advancing drug 
development and discovery [136]. RNA sequencing for single-cell innovation has become 
pivotal in advanced biomarker discoveries and gene clustering [176]. Probabilistic generative 
structures and variational autoencoders have been introduced to reduce high-dimensional 
gene expression data, aiding in the identification of subpopulations within hidden tumors 
[177]. Despite the success of ML approaches in biomarker discovery, there are persistent 
challenges. These include the need for interpretable classifiers for clinical adoption and the 
validation of multi-institutional, multi-site datasets to ensure generalizability. 
 
IntelliGenes represents a pioneering Machine Learning (ML) pipeline designed to integrate 
multi-genomics, clinical, and demographic data for the precise prediction of complex traits. 
Central to this innovative approach is the introduction of the Intelligent Gene Score (I-Gene 
Score), a novel metric crafted to evaluate the significance of individual biomarkers in disease 
prediction scenarios. Calculated through the application of Shapley Additive exPlanations 
(SHAP) and Herfindahl-Hirschman Indexes (HHI), the I-Gene Score leverages the direction 
of gene expression within the context of a disease, thereby providing valuable insights into 
the contribution of specific genes to the overall predictive model. Notably, this pipeline boasts 
user-friendly attributes, offering portability and cross-platform compatibility. Accessible 
through repositories such as GitHub and Code Ocean, IntelliGenes ensures broad accessibility 
and usability across diverse research environments [178]. To leverage its capabilities 
optimally, users are advised to utilize Python versions 3.6 to 3.11. Furthermore, machine 
learning methodologies have elucidated the genetic variances underlying traits such as height 
and body mass index, leveraging data from Single Nucleotide Polymorphism (SNP) arrays. 
Additionally, the application of multi-omic profiling has facilitated the measurement of 
clinical remission, marking a significant advancement in disease monitoring and management 
strategies [179]. 
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10. AI in Clinical Trial Optimization 
 
Artificial intelligence (AI) is positioned to transform pharmaceutical development, impacting 
the entire drug discovery process and clinical research landscape. Utilizing advanced data 
analysis techniques, AI systems effectively navigate different repositories, including 
electronic health records, molecular databases, academic literature, and clinical trial data, to 
identify critical trends, correlations, and potential therapeutic targets [180]. AI-driven insights 
enable tailored clinical trial designs and precise patient selection criteria, thereby enhancing 
trial success rates and advancing personalized medicine [181]. Moreover, AI facilitates 
continuous post-marketing surveillance by meticulously monitoring real-world data for 
adverse events or drug interactions, ensuring the ongoing safety of licensed medications [182].  
In the field of clinical trials, AI emerges as a catalyst for accelerating medical breakthroughs 
by revolutionizing data collection, bio-simulation, and disease diagnosis. By automating data 
generation, management, and interpretation throughout the trial lifecycle, AI enhances the 
efficiency of drug development research, patient recruitment, safety monitoring, and drug 
discovery endeavors [183]. Although struggling with challenges such as unstructured data 
from manual approaches and associated high costs, AI integration into clinical trials promises 
substantial enhancements in trial design, patient recruitment, and protocol development, 
ultimately bolstering success rates and improving patient outcomes [180]. 
 
The transformative impact of AI extends beyond conventional boundaries, development 
personalized medicine, enabling more efficacious therapies, realizing cost efficiencies, and 
augmenting overall efficiency in medical research and patient care [184]. By leveraging AI-
driven solutions, hospitals and Contract Research Organizations (CROs) streamline data 
management, automate data collection, monitor data quality, and analyze vast datasets, 
thereby expediting and refining the clinical trial process. The utilization of personalized AI 
technology empowers precision in patient recruitment, enrollment, monitoring, and 
adherence, leading to a paradigm shift towards optimized healthcare delivery [185]. In a 
recent study, Panchal et al., 2023, proposed an AI and blockchain-enabled secure data 
exchange framework for the Medical Internet of Things (IoT). This framework utilizes 
machine learning classifiers to distinguish between normal and attack data, with K-Nearest 
Neighbor achieving the highest accuracy. The data is securely stored in an IPFS-based 
blockchain network, ensuring transparency and privacy [186]. Furthermore, AI-based 
cybersecurity solutions for medical IoT devices have been shown to enhance data security and 
protection against cyber threats. By incorporating AI and machine learning, these solutions 
can improve anomaly detection, threat intelligence, compliance, encryption, and data 
protection in medical IoT environments [187]. 
 
In traditional clinical trials, challenges related to patient cohort selection and recruitment pose 
significant obstacles. However, AI-driven approaches offer promising solutions to address 
these issues. By leveraging AI algorithms, eligibility criteria can be effectively informed, 
patient diversity can be enhanced, sample sizes can be reduced, and patient matching and 
recruitment processes can be improved [188]. Tools like Trial Pathfinder utilize electronic 
health record (EHR) data to simulate various inclusion criteria, thereby enhancing the 
efficiency of patient selection and increasing overall survival rates [189]. 
 
Moreover, AI-based clinical trial matching systems, powered by natural language processing 
tools and machine learning algorithms, can streamline the patient screening process by 
extracting crucial information from patient real-world data (RWD) and trial protocols [68]. 



ISSN 2816-8089 

Int J Bioinfor Intell Comput, Vol 4, Issue 1, February 2025                                                                        19 

These AI-driven systems have demonstrated high accuracy and efficiency in identifying 
suitable candidates for specific trials, particularly in the field of cancer research [190].  
Despite the promising potential of AI in transforming clinical trials, several challenges must 
be addressed to ensure successful integration into the clinical trial ecosystem. One critical 
aspect is the necessity of high-quality data to build robust AI models. This requires 
standardized construction of biomedical databases and the inclusion of diverse data sources 
such as clinical records, medical images, omics data, wearables, and social media data [191]. 

 
11. Future Implementation and Impact of AI in Anticancer Drug 
Discovery 
 
11.1. Clinical translation 
 
The AI-CDSS (Artificial Intelligence Clinical Decision Support System) is a powerful tool 
designed to assist healthcare professionals in making informed, evidence-based decisions in 
patient care. By leveraging artificial intelligence algorithms and data analysis techniques, the 
AI-CDSS provides personalized recommendations and insights [192]. It offers a range of 
features and benefits, including patient data analysis, diagnostic and treatment 
recommendations, drug interaction and adverse event detection, predictive analytics, real-
time monitoring and alerts, and continuous learning and improvement. The system's 
applications are vast, spanning areas such as cancer diagnosis and treatment, chronic disease 
management, medication optimization, surgical decision support, infectious disease outbreak 
management, radiology and medical imaging analysis, mental health support, and clinical 
trials and research [193]. Chebanov et al., 2023, developed an advanced algorithm integrated 
into a software platform to design novel anti-tumor drugs, specifically targeting lung cancer. 
Utilizing deep learning (DL) techniques, the team assessed genes associated with poor clinical 
outcomes in lung cancer patients. By employing generative adversarial networks (GAN), they 
expanded their patient data pool. The results were systematically organized, highlighting 
genes with a significant impact on prognosis, identified through intersections with overall 
survival (OS) and progression-free interval (PFI) data. To refine their findings, another DL 
model distinguished between normal and tumor tissues, pinpointing targetable genes. A 
subsequent module predicted interactions between inhibitors and proteins, leveraging vector 
representations of protein sequences and chemical compounds for virtual screening in the 
PubChem database. This screening produced a dataset of 118,379 drug-protein interaction 
pairs, which were further analyzed using DL, achieving a ROC-AUC of 0.86. They identified 
160,000 pairs with an interaction probability above 0.99 and 2,921 pairs with a probability of 
1.0. Ultimately, five small molecules were identified as potential candidates for further 
validation. This study underscores AI-driven methods in automating drug discovery, 
validated through rigorous cross-validation using public data sources [194]. Geaney et al., 
2023, have highlighted the transformative impact of digital pathology (DP) and artificial 
intelligence (AI) in oncology research and cancer diagnostics. By digitizing pathology images 
and applying machine learning (ML) techniques such as Deep Learning Convolutional Neural 
Networks and Multiple Instance Learning, the study has enhanced morphological 
interpretation, biomarker quantitation, and the introduction of novel diagnostic concepts like 
spatial cellular distribution. These advancements have led to improved detection and grading 
of tumors, precise biomarker quantification, and better treatment prediction and prognostic 
purposes, thereby revolutionizing clinical trials. However, the integration of DP/AI into 
clinical practice brings new regulatory and design challenges for manufacturers, emphasizing 
the need for updated accreditation processes for diagnostic tools [195]. In a research study, 
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Tran et al., 2023, utilized artificial intelligence (AI) to enhance drug repurposing and target 
identification for cancer treatment. Through an AI-driven screening strategy, the team 
identified N-(1-propyl-1H-1,3-benzodiazol-2-yl)-3-(pyrrolidine-1-sulfonyl) benzamide 
(Z29077885) as a promising new anticancer drug. This compound was initially discovered 
using deep learning methods and was subsequently validated through various in vitro and in 
vivo experiments. Z29077885 demonstrated significant anticancer efficacy by inhibiting 
Serine/threonine kinase 33 (STK33) and inducing apoptosis via S-phase cell cycle arrest in 
lung (A549) and breast (MDA-MB 231) cancer cells. The compound's anti-tumour efficacy was 
further confirmed in an A549 xenograft model in BALB/c nude mice [196]. 
 

11.2. Patient-centric approach 
 

The implementation of a patient-centric approach in AI diagnostics is vital to uphold 
transparency and empower patients in making informed healthcare decisions. Ploug and 
Holm, 2020, discuss this approach through the lens of "effective contestability," which ensures 
patients have the necessary information to understand and challenge AI-driven diagnoses. 
This concept encompasses four essential dimensions: the data dimension, the bias dimension, 
the performance dimension, and the division of labor dimension. The data dimension focuses 
on providing patients with clear insights into how their data is used by the AI system, 
ensuring they are aware of the sources and types of data involved. The bias dimension 
addresses potential biases in AI algorithms, requiring transparency about the training data 
and any inherent biases that could affect diagnostic outcomes. The performance dimension 
emphasizes the need for patients to understand the accuracy, limitations, and reliability of AI 
systems, allowing them to critically assess the diagnostic recommendations provided. Lastly, 
the division of labor dimension clarifies the respective roles of AI systems and healthcare 
professionals in the diagnostic process, ensuring patients know who is responsible for 
different aspects of their care. By adhering to these dimensions, the framework aligns with 
ethical and legal standards, promoting an explainable AI that respects patient autonomy and 
fosters trust in AI-driven medical interventions [197]. 
 

11.3. Interdisciplinary collaboration 
 
Interdisciplinary collaboration between computational scientists, biologists, clinicians, and 
data analysts is essential to advance the development and validation of AI models in 
healthcare. Computational scientists bring expertise in algorithm development and data 
processing, which is crucial for creating sophisticated AI models [198]. Biologists provide 
deep insights into biological processes and molecular mechanisms, ensuring that the models 
are biologically relevant and accurate. Clinicians contribute their understanding of patient 
care and clinical workflows, helping to tailor AI applications to real-world medical settings. 
Data analysts play a key role in managing and interpreting large datasets, ensuring the 
integrity and usability of the data used to train and validate AI models [199]. 
 
Artificial Intelligence (AI) language models, leveraging natural language processing and 
pretrained algorithms, excel in tasks such as text generation and comprehension. In Fetal 
Medicine, these models can support healthcare professionals by providing detailed and 
precise information, enhancing decision-making, and improving communication between 
doctors and patients. However, integrating AI language models in this field presents 
challenges, including ethical issues, privacy concerns, and potential algorithmic biases. 
Ensuring transparency and interpretability of AI systems is crucial for building trust. 
Rigorous validation studies are necessary to assess their performance [200]. Lee et al., 2023, 
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conducted a study on the use of an AI-powered PD-L1 CPS analyzer to evaluate PD-L1 
expression, a predictive marker for immune checkpoint inhibitor (ICI) treatment, across six 
cancer types: biliary tract, colorectum, liver, pancreas, prostate, and gastric cancers. The AI 
tool, Lunit SCOPE PD-L1 CPS, was developed using over 1.51 million tumor cells and 873,000 
immune cells from 2,372 PD-L1 stained whole-slide images (WSI) and tissue microarray cores. 
This algorithm employed tissue area segmentation and cell detection models to calculate the 
combined positive score (CPS), which correlates with immunotherapeutic responses. 
Validation was performed on 135 PD-L1 stained WSIs reviewed by three pathologists. 
Discrepancies between the pathologists and the AI model led to re-evaluations, resulting in 
increased unanimous agreement to 92.6% and an improved OPA of 91.9%, with a range from 
82.6% (liver) to 100.0% (pancreas) [201]. 
 

11.4. Long-term sustainability 
 

There has been significant research on the advantages, disadvantages, and future perspectives 
of AI, highlighting its transformative impact on various societal areas. In healthcare, AI's 
remarkable potential is evident in pharmaceutical and biomedical studies, which are crucial 
for the socioeconomic development of the population. AI applications aim to tackle diseases 
such as cancer and neurodegenerative disorders. The lengthy drug development process can 
also be expedited with AI, accelerating research and improving medical care [202]. 
 
Early-stage drug discovery heavily relies on evaluating drug targets, understanding disease 
progression, and identifying patient characteristics, all while exploring chemical libraries of 
potential drug candidates. Artificial intelligence (AI) has become a credible approach to 
managing the diversity and volume of data in modern drug development. Many 
pharmaceutical sponsors prefer to keep their data within closed solutions due to intellectual 
property concerns. However, newer platforms offer outsourced solutions that combine 
sponsor data with external open-source data to make predictions using proprietary 
algorithms [203]. Digital research environments (DREs) provide mechanisms to ingest, curate, 
integrate, and manage diverse data types relevant to drug discovery. They also offer 
workspace services for target sharing and collaboration, allowing sponsors to control the 
platform, data, and predictive algorithms. Regulatory engagement will be crucial for 
operationalizing these solutions, as current regulations may not adequately address the 
quality and usability of drug discovery data in the future. More sophisticated AI/ML 
algorithms are expected, leveraging diverse data types such as imaging and genomic data. 
This supports the need for a dynamic, DRE-enabled environment to enhance drug discovery 
[204]. A major challenge in TCR-T therapy is accurately predicting the pairing between TCRs 
and peptide-human leukocyte antigens (pHLAs). Modern computational immunology, 
leveraging AI-based platforms, addresses this challenge by optimizing TCR screening and 
discovery. Bujak et al., 2023, proposed an observational clinical trial to collect patient samples 
and generate a database of pHLA:TCR sequences to support AI-driven TCR selection. The 
multicenter study enrolled 100 patients with stage II-IV colorectal cancer. Primary tumor 
tissue and peripheral blood samples were collected, with peripheral blood mononuclear cells 
isolated and cryopreserved. Nucleic acid extraction was completed in 86 cases, and 57 samples 
underwent whole exome and RNA sequencing [205]. 
 

12. Comparing AI with Traditional Drug Discovery Methods 
 
Artificial Intelligence (AI) is revolutionizing pharmaceutical research. Traditional drug 
discovery is often lengthy and costly, with many drugs failing to gain regulatory approval 
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due to their unsuitability. Virtual screening (VS) offers a new method to streamline the 
research and development process by reducing the initial effort needed to identify potential 
drug components. Deep Learning (DL) algorithms are crucial in VS, as they can detect 
patterns within existing datasets [206]. In drug discovery, DL algorithms analyze patterns of 
chemical compounds related to diseases. AI's capabilities are expanding, with platforms like 
DeepChem enabling the creation of AI models to identify potential drug components for 
various diseases. This research paper explores Tyrosine-protein kinase in cancer, using the VS 
process to identify potential drug components. The results show that the AI-enabled VS 
method can predict potential drugs with 85% accuracy on a small cancer dataset [207]. 
 
Recent advancements in AI-driven technologies, particularly in protein structure prediction, 
are significantly reshaping the landscape of drug discovery and development. By enhancing 
the precision and speed of drug target identification and the design and optimization of drug 
candidates, these technologies streamline the entire drug development process (Table 2). 
AlphaFold2, for example, has been instrumental in cancer drug development, offering 
insights into its efficacy, limitations, and potential challenges. Comparing AlphaFold2 with 
other algorithms like ESMFold reveals diverse methodologies in this field and their practical 
implications for specific applications. Traditionally, the three-dimensional structures of 
proteins were deciphered using labor-intensive and costly experimental methods such as X-
ray crystallography, nuclear magnetic resonance (NMR), and cryogenic electron microscopy 
(cryo-EM). While invaluable, these techniques are limited by speed, cost, and applicability to 
certain protein structures [208]. In contrast, AI advancements in protein structure prediction, 
exemplified by AlphaFold2, have dramatically expanded our capabilities, complementing 
and occasionally surpassing experimental approaches. Following AlphaFold2's success, other 
AI tools like RoseTTAfold, ESMFold, and OpenFold, as well as novel protein design tools like 
ProGen, ProteinMPNN, EvoDiff, and RFdiffusion, have emerged. Additionally, DiffDock 
enhances molecular docking capabilities. These rapidly developing tools employ novel 
algorithms and AI architectures, each with unique strengths and weaknesses, further 
revolutionizing drug discovery [209]. 
 
In a recent development, AlphaMissense, a computational tool created by Google DeepMind, 
has been shown to accurately assess the pathogenic potential of missense variants. Utilizing 
structural insights from AlphaFold, AlphaMissense evaluates the effects of mutations on 
protein functionality. This tool holds significant promise in cancer drug discovery by aiding 
researchers in efficiently selecting genetic mutations for in-depth study, expediting the 
identification of novel drug targets. AlphaMissense also has the potential to enhance our 
understanding of less-explored segments of the genetic code, particularly genes crucial to 
human health whose functions are not yet fully understood [210]. 
 
Docking, a computational strategy used to predict the formation of stable complexes between 
two molecules, is typically divided into ligand docking and protein-protein docking. AI 
significantly enhances the speed and precision of this process. Deep Docking (DD), an AI-
enabled method for virtual screening of ultra-large chemical libraries, accelerates structure-
based virtual screening. DD iteratively docks subsets of a chemical library, synchronizing with 
ligand-based predictions to improve virtual hit enrichment without significantly losing 
potential drug candidates [211]. AI revolutionizes drug discovery by enhancing the speed and 
precision of identifying and optimizing drug candidates, often surpassing traditional 
methods. Understanding the strengths and limitations of both AI and traditional approaches 
is essential for developing effective and safe treatments. 
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Table 2: Comparative Analysis of Tools and Techniques in Traditional and Modern Anticancer Drug 
Discovery Approaches. 
 

Category Traditional Approaches Modern Approaches References 

High-Throughput 
Screening 

Natural product screening 
Target-based screening, High-content 
screening, Virtual screening 

[212] 

Cell-Based Assays 
Simple cell lines, primary 
cultures 

3D cell cultures, patient-derived 
models 

[213] 

Animal Models 
Mouse xenograft models, 
syngeneic models 

Genetically engineered mice, Patient-
derived xenografts (PDX) 

[214] 

Molecular Biology Limited genetic insights 
Genomic sequencing, Next-generation 
sequencing (NGS), CRISPR-Cas9 

[215] 

Bioinformatics & 
Computational Tools 

Basic data analysis, manual 
processing 

Advanced bioinformatics, Machine 
learning, Molecular modeling 

[216] 

 

13. Ethical Considerations and Validation of AI Models in Anticancer 
Drug Discovery 
 
13.1. Ethical considerations  
 
The potential for highly personalized oncology care using artificial intelligence (AI) has been 
anticipated since AI's inception. Advances in machine learning and deep learning algorithms, 
coupled with the growth of comprehensive multiomics databases and the reduced cost of 
computational power, are bringing this promise closer to reality [217]. AI's successful clinical 
applications span the cancer continuum, particularly in multidisciplinary practices. Notable 
examples include computer vision-assisted image analysis with several FDA-approved 
applications, whole blood multicancer detection through deep sequencing, virtual biopsies, 
natural language processing to derive health trajectories from medical notes, and advanced 
clinical decision support systems integrating genomics and clinical data [218]. 
 
However, broad adoption of AI in oncology faces significant challenges. Issues such as data 
transparency and the interpretability of AI's "black box" mechanisms hinder trust, while 
biases against underrepresented populations limit the reproducibility of AI models and 
exacerbate healthcare disparities. In the midterm, AI's evolution is expected to involve 
increasingly complex models using multimodal data to better simulate biological systems. 
Looking further ahead, the concept of "living databases" that continuously integrate all 
aspects of a person's health into comprehensive data sets could drive sophisticated modeling 
for highly tailored treatments, dose determinations, and surveillance strategies [219].  
 
The integration of AI in anticancer drug discovery presents significant ethical considerations 
that must be addressed to ensure responsible development and deployment. Ethical concerns 
primarily revolve around data privacy, bias, transparency, and the validation of AI models 
[220]. Firstly, ensuring the privacy and security of patient data used to train AI models is 
paramount. Given the sensitive nature of health data, robust measures must be implemented 
to protect against unauthorized access and breaches, safeguarding patient confidentiality 
[221]. Bias in AI models is another critical issue. AI systems trained on unrepresentative 
datasets may perpetuate existing biases, leading to unequal healthcare outcomes. It is essential 
to use diverse and comprehensive datasets to train AI models, thus ensuring equitable 
treatment across different patient demographics. This approach helps in mitigating health 
disparities and promoting fairness in AI-driven healthcare solutions [222]. Transparency in 
AI decision-making processes is crucial for building trust among healthcare providers and 
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patients. AI models must be designed to provide clear and understandable explanations for 
their predictions and recommendations. This transparency allows clinicians to make informed 
decisions and fosters confidence in AI-assisted diagnostics and treatments [223].  
 
In their 2023 study, Durur-Subasi and Özçelik highlight the transformative impact of artificial 
intelligence (AI) in breast imaging, driven by the global rise in breast cancer cases. Utilizing 
deep learning techniques, AI promises to refine diagnostic processes significantly, though its 
adoption varies globally. AI's capability to handle extensive datasets and process 
multidimensional information is pivotal for advancing precision medicine in breast cancer 
research. However, its integration faces several challenges, including data-related obstacles 
and the need for transparency and trust in decision-making [224]. Remote monitoring 
technologies are digital health tools that use patient reporting and wearable sensors to track 
health data such as vital signs, physical activity, sleep patterns, PROs and PRD. Depending 
on the system, humans or human-assisted AI algorithms analyze these data, promising to 
provide personalized insights and early detection of health issues such as poor tolerance of 
oral chemotherapy. These are more automated than virtual consultations, but they often 
require clinical expertise, such as from oncology nurse navigators, to interpret results and 
guide patients [225,226]. 
 
A cancer diagnosis carries significant social stigma, making the preservation of human dignity 
paramount. Despite its sophistication, AI lacks the empathy, compassion, and cultural 
understanding that human caregivers provide. Overreliance on AI could lead to impersonal 
care and reduced human interaction, potentially eroding patient dignity and weakening 
therapeutic relationships. As AI advances towards greater algorithmic autonomy, the risk to 
human dignity increases. To mitigate these threats, it is crucial to involve humans in AI 
interpretation and maintain human contact points. Avoiding humanoid interfaces can also 
help remind patients that AI is not human, thereby helping to preserve their dignity [227]. 
 
Artificial Intelligence (AI) has become a prevalent force in diverse medical domains, including 
image diagnostics, pathological categorization, treatment plan selection, and prognosis 
analysis. The collaboration between human and computer interactions has notably matured 
in the context of image-assisted cancer diagnosis. However, the ethical considerations 
associated with the incorporation of AI into clinical decision-making processes remain 
inadequately addressed. Consequently, the AI-driven Clinical Decision-making System has 
not fully embraced interactions between humans and computers [228]. 
 
The validation of AI models is a crucial step to ensure their efficacy and safety in clinical 
settings. AI models must be rigorously tested using diverse datasets to confirm their 
generalizability across various populations. The validation process should include clinical 
trials conforming to established reporting standards, such as the Consolidated Standards of 
Reporting Trials–Artificial Intelligence (CONSORT-AI) and the Standard Protocol Items: 
Recommendations for Interventional Trials–Artificial Intelligence (SPIRIT-AI). Providing 
detailed performance metrics, such as the area under the receiver-operating characteristic 
curve (AUC-ROC) and false-positive/false-negative rates, is essential for transparency. These 
metrics should be clearly communicated to clinicians and end-users to ensure that the AI 
models are applied correctly and effectively [229]. Huwaimel and Alobaida 2022, explored the 
use of supercritical CO2 (SC-CO2) as an alternative to traditional solvents in the 
pharmaceutical industry, focusing on predicting and validating drug solubility with AI. They 
evaluated tamoxifen solubility in SC-CO2 using machine learning (ML) techniques, 
employing Adaboost-enhanced models: K-nearest Neighbor (KNN), Theil-Sen Regression 
(TSR), and Gaussian Process (GPR). The study analyzed pressure and temperature as inputs 
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to predict solubility, with ADA-KNN, ADA-GPR, and ADA-TSR showing R² values of 0.996, 
0.967, and 0.883, respectively. ADA-KNN was the best model, achieving optimal solubility 
predictions. This research demonstrates AI's potential to enhance drug development by 
improving solubility predictions and optimizing pharmaceutical processes [230]. 
 

13.2. Challenges and Considerations in AI-Driven Drug Discovery 
 
Machine learning (ML) models have demonstrated success in predicting drug combinations, 
but challenges persist with higher-order combinations. Striking a balance between toxicity 
and effectiveness necessitates careful examination, requiring the evaluation of patient data to 
assess the predictions accurately [231]. Deep learning (DL) techniques show promise in 
detecting drug responses; however, the development of more advanced algorithms is 
imperative to enhance their efficacy. The implementation of explainable artificial intelligence 
(XAI) techniques is crucial to interpret black-box models and ensure fairness in model 
outcomes [232].  
 
The advancement of AI research in oncology demands access to high-quality, large datasets. 
Collaborative efforts across multiple institutions are essential to acquire diverse datasets, 
including data from large-scale clinical trials. Researchers should collectively work toward 
creating comprehensive datasets to drive impactful AI research [233].  
 
The effectiveness of AI research is contingent on the quality of input imaging data, prompting 
efforts to develop scoring and assessment methods for image quality. Once AI solutions show 
promise in addressing oncological challenges, validation in real clinical settings becomes 
imperative to establish their clinical utility [234]. 
  
Legal and ethical considerations pose potential barriers to the research and implementation 
of AI in oncological imaging. Establishing clear legal and ethical frameworks, involving input 
from all stakeholders, is essential to navigate these challenges effectively [235].  
 
Translating AI research results into clinical practice requires extensive collaboration among 
researchers, radiologists, surgeons, radiation oncologists, oncologists, and other healthcare 
practitioners [236]. Seamless integration of AI technology into existing clinical picture 
archiving and communication systems (PACS) and clinical workflows is crucial for successful 
implementation and adoption in oncological imaging. The interdisciplinary collaboration 
ensures a holistic approach to enhancing patient care through the synergistic application of 
AI technologies in the field of oncology [237].  
 

14. Conclusion and Future Prospects 
 
This review underscores the significant role of Artificial Intelligence (AI) in revolutionizing 
anticancer drug discovery, offering a glimpse into a future where drug development is both 
precise and efficient. AI's capability to process vast datasets has markedly accelerated the 
identification of therapeutic targets and the design of novel drug molecules, paving the way 
for personalized cancer treatments. Despite these advancements, the path forward is not 
without challenges. Key among these are ensuring the quality and diversity of data, 
improving the interpretability of AI models, and effectively integrating AI insights into 
clinical practice to yield tangible patient benefits. 
Moving forward, it is imperative that collaborative efforts between computational scientists, 
biologists, and clinical practitioners intensify to address these challenges. Such collaborations 



ISSN 2816-8089 

Int J Bioinfor Intell Comput, Vol 4, Issue 1, February 2025                                                                        26 

will be crucial in refining AI algorithms and ensuring that the insights derived from AI models 
are clinically relevant and lead to improved patient outcomes. Additionally, the field must 
embrace advancements in explainable AI to enhance transparency and trust in AI-driven 
decisions. 
 
In conclusion, while AI has already begun to transform the landscape of anticancer drug 
discovery, its full potential is yet to be realized. The continued evolution of AI technologies, 
coupled with robust interdisciplinary collaborations, promises to further break down the 
barriers in drug discovery and lead to the development of more effective anticancer therapies. 
As we navigate this evolving landscape, vigilance, collaboration, and innovation will be 
essential to harness the full potential of AI in the fight against cancer. 
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