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Abstract 
 
Missing data is a pervasive challenge in real-world evidence (RWE) studies, arising from 
incomplete or inconsistent data collection. Proper handling of missing data is critical to ensure 
the validity and reliability of study outcomes. This paper explores strategies to address 
missingness, focusing on mechanisms, methods, and tools available to researchers. 
 
Understanding the underlying mechanism of missingness—Missing Completely at Random 
(MCAR), Missing at Random (MAR), or Missing Not at Random (MNAR)—is the foundation 
of effective data management. Methods such as complete case analysis and single imputation 
are suitable for MCAR scenarios but may introduce bias or underestimate variability. 
Advanced approaches, like multiple imputation and maximum likelihood estimation, better 
address MAR data, preserving uncertainty and improving robustness. For MNAR cases, 
sensitivity analyses are essential to evaluate the impact of missingness on study conclusions. 
 
Innovative tools in R, including mice, missForest, VIM, and naniar, enable effective 
imputation, visualization, and modeling of missing data. Machine learning techniques and 
Bayesian approaches offer promising alternatives for complex datasets. Combining methods, 
such as multiple imputation followed by sensitivity analysis, ensures more reliable inferences. 
 
Best practices emphasize assessing missingness patterns, transparent documentation of 
assumptions, and thorough reporting of strategies used to address missing data. Adopting 
these approaches minimizes bias and enhances the credibility of RWE studies, ultimately 
supporting better-informed healthcare decisions. This paper underscores the importance of a 
systematic, informed approach to handling missing data in RWE. 
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1. Introduction 
 
In an era where real-world evidence (RWE) increasingly shapes healthcare decisions and 
policies, the data quality underlying these studies is paramount. Yet, missing data remains an 
unavoidable and persistent challenge, threatening the validity of findings and the reliability 
of conclusions. The absence of systematic approaches to handle this issue can lead to biased 
outcomes and undermine the credibility of RWE studies, which are often pivotal in translating 
research into actionable healthcare insights. 
 
This paper addresses the pressing need for robust strategies to manage missing data, 
exploring the mechanisms of missingness, advanced imputation techniques, and innovative 
tools that empower researchers to mitigate its impact. By adopting a structured and informed 
approach, researchers can ensure the robustness of their analyses, ultimately supporting more 
accurate and impactful healthcare decisions. 
 

1.1. Understanding the missing data mechanism 
 
Handling missing data effectively begins with identifying the mechanism that governs its 
occurrence. This understanding forms the cornerstone for selecting the most appropriate 
methods to address missingness, as different mechanisms require tailored approaches. 
 

1.2. Missing Completely at Random (MCAR) 
  
In the MCAR mechanism, the probability of data being missing is entirely unrelated to any 
observed or unobserved variables in the dataset. For instance, if a random technical issue 
causes the loss of a subset of survey responses, the missing data can be considered MCAR. 
The randomness of this missingness implies no bias in the dataset, making MCAR the most 
straightforward scenario to address. Researchers often employ methods like complete case 
analysis, which involves analyzing only the cases with complete data, or single imputation 
methods, assuming no systematic difference between missing and observed data. However, 
these approaches may reduce sample size and statistical power. 

 
1.3. Missing at Random (MAR) 
 
The MAR mechanism occurs when the missingness is related to the observed data but not to 
the missing values themselves. For example, in a clinical study, older participants might be 
less likely to complete follow-up surveys, and their missingness is associated with the 
observed age variable. Addressing MAR requires more sophisticated methods like multiple 
imputation or maximum likelihood estimation, which account for the relationship between 
missingness and observed data. These methods preserve uncertainty in imputed values and 
improve robustness, making them suitable for scenarios where the MAR assumption holds. 
 

1.4. Missing Not at Random (MNAR) 
 
In the MNAR mechanism, the missingness depends on the unobserved (missing) data itself, 
which poses the most challenging scenario. For example, in a study measuring income, 
individuals with higher incomes might be more likely to omit their responses due to privacy 
concerns, resulting in systematic missingness tied to the unreported values. Since MNAR 
cannot be fully addressed using observed data alone, sensitivity analyses become crucial. 
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These analyses explore how various assumptions about the missingness mechanism impact 
study conclusions, ensuring that the results remain valid under different plausible scenarios. 

 
1.5. Importance of identifying the mechanism 
 
Accurately identifying the missing data mechanism is critical for guiding the choice of an 
appropriate handling method. Misclassifying the mechanism—for instance, treating MNAR 
data as MAR—can lead to biased estimates, underestimated variability, and erroneous 
conclusions. Researchers should begin with an assessment of missingness patterns, using 
statistical tests or visualization tools to hypothesize the most likely mechanism. Combining 
this understanding with domain knowledge further enhances the accuracy of the 
identification process. 
  
The choice of missingness mechanism—Missing Completely at Random (MCAR), Missing at 
Random (MAR), or Missing Not at Random (MNAR)—significantly impacts the 
interpretation of results in RWE studies. If data are MCAR, the missingness does not depend 
on observed or unobserved values, allowing unbiased analyses with complete-case data. 
Under MAR, missingness depends on observed data, and proper imputation methods can 
minimize bias. However, for MNAR, where missingness depends on unobserved values, 
failing to account for the underlying mechanism can lead to biased estimates and misleading 
conclusions. By systematically addressing the underlying mechanism, researchers can 
implement effective strategies that minimize bias, preserve data integrity, and bolster the 
reliability of RWE study outcomes. 
 

2. Methods to Handle Missing Data 
 
Effectively handling missing data is essential for ensuring the validity and reliability of real- 
world evidence (RWE) studies. The choice of method depends on the missing data mechanism 
(MCAR, MAR, or MNAR) and the specific research context. Below, we explore key methods, 
their applications, advantages, and limitations. 
 

2.1. Complete case analysis (Listwise Deletion) 
 
Complete Case Analysis (CCA), often referred to as Listwise Deletion, is a common method 
to handle missing data in real-world evidence (RWE) settings. In this approach, only the cases 
(observations) with no missing data for the variables of interest are retained for analysis. 
 
This technique is straightforward but assumes that the missing data mechanism is either 
Missing Completely at Random (MCAR) or minimally impactful if Missing at Random 
(MAR). Using CCA in clinical trials has its pros and cons, especially in RWE studies where 
missingness is prevalent due to the less controlled environment. 
 
Application: Best suited for data missing completely at random (MCAR), where missingness 
does not introduce bias. 
Advantages: Easy to implement and interpret. Avoids assumptions needed for data 
imputation methods. Supported in most statistical software, including R. 
Limitations: Reduction in sample size can decrease statistical power. If data are not MCAR, 
excluding cases may lead to biased estimates. Findings may not represent the population due 
to exclusion of incomplete cases [1-3]. 
Example: Imagine a study using electronic health records (EHRs) to assess the effectiveness 
of a new diabetes medication. Variables include: 
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• Patient age 

• HbA1c levels 

• Body mass index (BMI) 

• Medication adherence 

• Outcome: Reduction in HbA1c after 6 months 
 
Some data may be missing due to incomplete records, patient dropout, or unrecorded 
variables. 
 

• Simulate a Dataset  
set.seed(123)  
library(dplyr) 
/Simulating a dataset with missing values /  
data <- tibble( patient_id = 1:20, 
age = c(sample(40:70, 15, replace = TRUE), rep(NA, 5)),  
hbA1c = c(runif(18, 6, 10), rep(NA, 2)), 
bmi = c(runif(17, 20, 35), rep(NA, 3)), 
adherence = sample(c(0, 1), 20, replace = TRUE),  
outcome = c(runif(18, -1, -0.1), rep(NA, 2)) ) 
 

• Identify Missing Data  
summary(data) 
sapply(data, function(x) sum(is.na(x))) # Count missing values 
 

• Perform Complete Case Analysis 
complete_cases <- na.omit(data) /Remove rows with any missing values/ 
print(complete_cases) 
 

• Fit a Model 
/Example: Linear regression using complete cases/ 
model <- lm(outcome ~ age + hbA1c + bmi + adherence, data = complete_cases) 
summary(model) 
 

2.2. Single imputation 
 
Single imputation is a technique used to handle missing data by replacing missing values with 
a plausible estimate, such as the mean, median, mode, or predictions from a regression model. 
In real-world evidence (RWE) studies, this method is often used to address missing data 
resulting from the less controlled nature of such environments (e.g., electronic health records 
or patient-reported outcomes) [1,2]. 
 
Advantages: Straightforward and easy to implement. Retains all cases for analysis. Can be 
tailored (mean, median, regression) based on the nature of the data.  
Limitations: Ignores uncertainty in the imputed values. Assumes the imputed value is 
correct, which may not reflect the true data distribution. Not Suitable for MAR or MNAR, 
Assumes MCAR or minimal impact under MAR [4]. 
Example: A study evaluates the effectiveness of a new hypertension drug using RWE data 
from patient records. The dataset includes: 

• Patient age 

• Blood pressure (BP) before treatment 

• Body mass index (BMI) 
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• Adherence (binary) 

• Outcome: Reduction in BP after 6 months 
 
Some variables have missing data. 
 

• Simulate a Dataset  
set.seed(123) 
library(dplyr) data <- tibble( patient_id = 1:20, 
age = c(sample(40:70, 18, replace = TRUE), rep(NA, 2)), 
bp_before = c(runif(19, 120, 180), NA), 
bmi = c(runif(17, 20, 35), rep(NA, 3)), 
adherence = sample(c(0, 1), 20, replace = TRUE),  
outcome = c(runif(18, -10, -5), rep(NA, 2)) )  
print(data) 
 

• Visualize Missing Data  
library(ggplot2) 
library(naniar) 
gg_miss_var(data) + labs(title = "Missing Data Pattern") 
 

• Mean Imputation  
data_mean_imputed <- data %>% 
mutate ( age = ifelse(is.na(age), mean(age, na.rm = TRUE), age), 
bp_before = ifelse(is.na(bp_before), mean(bp_before, na.rm = TRUE), 
bp_before),  
bmi = ifelse(is.na(bmi), mean(bmi, na.rm = TRUE), bmi), 
outcome = ifelse(is.na(outcome), mean(outcome, na.rm = TRUE), outcome)) 
 

• Median Imputation  
data_median_imputed <- data %>% 
mutate( age = ifelse(is.na(age), median(age, na.rm = TRUE), age), 
bp_before =ifelse(is.na(bp_before), median(bp_before,na.rm =TRUE), 
bp_before),  
bmi = ifelse(is.na(bmi), median(bmi, na.rm = TRUE), bmi), 
outcome = ifelse(is.na(outcome), median(outcome, na.rm = TRUE), outcome)) 
 

• Regression Imputation 
/Fit a regression model for BMI as an example/ 
fit <- lm(bmi ~ age + bp_before + adherence, data = data, na.action = 
na.exclude) data$predicted_bmi <- predict(fit, newdata = data) 
data_regression_imputed <- data %>% 
mutate(bmi = ifelse(is.na(bmi), predicted_bmi, bmi)) %>%  
select(-predicted_bmi) 

 

2.3. Multiple imputation 
 
Multiple Imputation (MI) is a robust method for handling missing data, commonly used in 
real-world evidence (RWE) studies. Unlike single imputation, MI accounts for uncertainty by 
generating multiple plausible datasets with different imputed values and pooling the results. 
This ensures valid statistical inference while minimizing bias [1,2]. 
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Application: Particularly useful for data missing at random (MAR). 

Advantages: By creating multiple datasets, MI incorporates variability in imputed values. 

Ensures appropriate estimates of standard errors and p-values. 

Limitations: Requires multiple analyses and pooling. Requires careful specification of the 

imputation model. Relies on data being Missing at Random (MAR) [4,5]. 

Example: An RWE study evaluates the effect of a new diabetes drug using data from 

electronic health records. Variables include: 

• Patient age 

• Baseline HbA1c 

• BMI 

• Adherence (binary) 

• Outcome: HbA1c reduction after 6 months 
 
Summary(data) 
 

• Visualize Missing Data 
library(naniar) 
gg_miss_var(data) + labs (title = "Missing Data Pattern") 
 

• Perform Multiple Imputation  
library(mice) 
/Impute missing data/ 
imputed_data <- mice (data, m = 5, method = "pmm", maxit = 10, seed = 123) 
 

• Analyze Imputed Datasets 
/Example: Fit a linear model on each dataset/ 
fit <- with (imputed_data, lm(outcome ~ age + hbA1c + bmi + adherence)) 
/Pool results across imputations/ pooled_results <- pool(fit) 
summary(pooled_results) 
 

• Visualize Results 
/Density plot of imputed values for HbA1c/ 
Stripplot (imputed_data, hbA1c ~ .imp, pch = 20, cex = 1.5, col = "blue", main = 
"Imputed Values for HbA1c") 

 

2.4. Regression models 
 
Regression models are powerful statistical tools used in real-world evidence (RWE) studies to 
analyze relationships between variables and adjust for confounders. These models are 
essential for deriving valid and generalizable insights from observational data in clinical trials, 
where randomization may not be possible. 
 
Application: Suitable when missingness aligns with MAR assumptions. 
Advantages: Can accommodate continuous, binary, time-to-event, and count outcomes. 
Essential in non-randomized RWE studies. Clear insights into the relationship between 
variables [6]. 
Limitations: Ensure assumptions (e.g., linearity, independence) are met. Overfitting can occur 
with too many predictors. RWE data may have biases affecting external validity [7-9]. 

Example: A real-world study evaluates the effect of a new drug for hypertension. Variables 

include: 
• Patient age 



ISSN 2816-8089 

 

Int J Bioinfor Intell Comput, Vol 4, Issue 1, February 2025                64 

 

• Baseline systolic blood pressure (SBP) 

• Adherence (binary: 1 = adherent, 0 = non-adherent) 

• Drug type (binary: 1 = new drug, 0 = standard drug) 

• Outcome: SBP reduction after 6 months 
 
Simulate Dataset  
 

• set.seed(123)  
library(dplyr) 
data <- tibble( patient_id = 1:100, 
age = sample(40:80, 100, replace = TRUE),  
baseline_sbp = rnorm(100, mean = 150, sd = 10),  
adherence = sample(c(0, 1), 100, replace = TRUE),  
drug_type = sample(c(0, 1), 100, replace = TRUE), 
sbp_reduction = rnorm(100, mean = -15, sd = 5) + 0.5 * adherence + 2 * drug_type)  
summary(data) 
 

• Fit a Linear Regression Model 
/Linear regression to assess SBP reduction/ 
fit_lm <- lm(sbp_reduction ~ age + baseline_sbp + adherence + drug_type, data = 
data) 
summary(fit_lm) 
Key Outputs: 
Coefficients: Show the effect of each predictor on SBP reduction. 
Adjusted R-squared: Indicates the proportion of variance explained by the model. 
 

• Fit a Logistic Regression Model 
For example, converting the outcome to a binary variable (e.g., significant reduction 
= SBP reduction > 10 mmHg). 
data <- data %>% 
mutate(significant_reduction = ifelse(sbp_reduction > -10, 1, 0)) 
fit_logit <- glm(significant_reduction ~ age + baseline_sbp + adherence + drug_type, 
data = data, family = binomial) 
summary(fit_logit) 
/Odds ratios/ exp(coef(fit_logit)) 
 

• Cox Proportional Hazards Model 
For time-to-event outcomes like time to achieve a 10 mmHg reduction in SBP. 
library(survival) 
/Simulating time-to-event data/ data <- data %>% 
mutate(time_to_reduction = rexp(100, rate = 0.1)) 
fit_cox <- coxph(Surv(time_to_reduction, significant_reduction) ~ age + adherence 
+ drug_type, data = data) summary(fit_cox) 
 

• Visualize Results 
/Visualization of linear regression predictions/  
library(ggplot2) data$predicted <- predict(fit_lm)  
ggplot(data, aes(x = predicted, y = sbp_reduction)) +  
geom_point() + 
geom_smooth(method = "lm") + 
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labs(title = "Predicted vs Actual SBP Reduction", x = "Predicted Reduction", y = 
"Actual Reduction") 

 
2.5. Maximum Likelihood Estimation (MLE) 
 
Maximum Likelihood Estimation (MLE) is a widely used statistical method to estimate the 
parameters of a model by maximizing the likelihood function, which measures the probability 
of observing the given data under different parameter values. In the context of real-world 
evidence (RWE) in clinical trials, MLE can be applied to estimate parameters for models that 
describe treatment effects, patient outcomes, or other clinical phenomena using observational 
or real-world data [10]. 
 
Application: Commonly used in mixed-effects models, structural equation modeling, and 
other advanced statistical frameworks [11]. 
Advantages: MLE can incorporate covariates to model individual differences. Extensions like 
expectation maximization (EM) can handle missing data. Using covariates in the model helps 
adjust for confounding [12]. 
Limitations: Requires strong assumptions about the data and may be complex to implement. 
Example: Suppose we want to evaluate the effectiveness of a new diabetes medication on 
HbA1c levels using observational data. The data includes patient demographics, baseline 
HbA1c levels, and HbA1c measurements after treatment initiation. Because this is real- world 
data, it may have challenges like missing data, heterogeneity, and potential confounding 
factors [13]. 
 
We aim to estimate the treatment effect using a linear regression model, where the change in 
HbA1c levels (ΔHbA1c\Delta HbA1cΔHbA1c) is modeled as a function of treatment (XXX) 
and covariates (ZZZ). 

     
        (1) 

where: 
β0\beta_0β0: Intercept 
β1\beta_1β1: Treatment effect 
β2\beta_2β2: Effect of covariates 
ϵi: Error term, assumed to follow a normal distribution N(0,σ2) 
 
Applying MLE 
 
MLE estimates the parameters β0, β1, β2,  
σ2 by maximizing the likelihood function: 
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2
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0 1 2 221
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   (2) 

 

• Simulated example data set.seed(123) 
n <- 100 
X <- rbinom(n, 1, 0.5) /Treatment indicator (0 or 1)/ Z <- rnorm(n, 50, 10) /Covariate 
(e.g., age)/ 
epsilon <- rnorm(n, 0, 1) /Error term/ beta_0 <- 1 
beta_1 <- -0.5 
beta_2 <- 0.1 y <- beta_0 + beta_1 * X + beta_2 * Z + epsilon /Change in HbA1c/ 

0 1 21 i i i iHbA c X Z  = + + + 
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/Log-likelihood function/ log_likelihood <- function(params) { beta_0 <- params[1] 
beta_1 <- params[2] beta_2 <- params[3] sigma <- params[4] 
/Predicted values/ 
y_pred <- beta_0 + beta_1 * X + beta_2 * Z 
/Log-likelihood 
ll <- -0.5 * n * log(2 * pi) - n * log(sigma) - sum((y - y_pred)^2) / (2 * sigma^2) return(-
ll) /Negative because optim minimizes/} 
/Initial parameter guesses/ 
init_params <- c(beta_0 = 0, beta_1 = 0, beta_2 = 0, sigma = 1) 
/Optimization using MLE/fit <- optim(init_params, log_likelihood, method = 
"BFGS", hessian = TRUE) fit$par /Estimated parameters/ 
 

• Interpretation 
The MLE estimates of β0, β1, β2, σ are the parameter values that maximize the 
likelihood of observing the given data [14,15]. 
β1 represents the estimated treatment effect on ΔHbA1c. 

 

2.6. Weighting methods 
 
Weighting methods are critical in RWE to address confounding and ensure the observed 
treatment effects are valid and reliable. They allow researchers to balance covariates across 
treatment groups, particularly in non-randomized studies. Common weighting methods 
include Inverse Probability of Treatment Weighting (IPTW), propensity score weighting, and 
calibrated weighting. 
 
Application: Appropriate for MAR mechanisms. 
Advantages: Ensures representativeness of the dataset by compensating for missingness. 
Limitations: Weighting cannot adjust for unmeasured covariates. Sensitivity analyses are 
recommended. May arise from very small or large propensity scores. Address by trimming or 
using stabilized weights. Incorrect specification of the propensity score model can bias results.  
Example: Inverse Probability of Treatment Weighting (IPTW) 
You are analyzing real-world data from a healthcare database to evaluate the effect of a new 
antihypertensive drug on systolic blood pressure (SBP) reduction. Since this is an 
observational study, the treatment assignment is not random and may depend on patient 
characteristics such as age, baseline SBP, and comorbidities [16]. To estimate the treatment 
effect unbiasedly, we use IPTW to create a pseudo-population where the distribution of 
covariates is balanced across treatment groups [9,14,17,18]. 
 
 Steps 
 

1. Model the propensity Score 

The propensity score ( )( )e X  is the probability of receiving the treatment given 

covariates ( )X : 

( ) ( )1|e X P T X= =          (3) 

This can be modeled using logistic regression. 
2. Calculate Weights 

The IPTW weight for each individual is computed as: 

( ) ( )
1 1

1, 0
1

i i i i

i i

w ifT w ifT
e X e X

= = = =
−

      (4) 
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3. Estimate the Treatment Effect 
Use weighted regression or weighted mean differences to estimate the treatment 
effect. 

 

• Simulated data  
set.seed(123) 
 n <- 200 
age <- rnorm(n, mean = 60, sd = 10) /Age/ 
baseline_sbp <- rnorm(n, mean = 140, sd = 15) /Baseline SBP/  
comorbidity <- rbinom(n, 1, 0.3) /Comorbidity (0/1)/ 
treatment <- rbinom(n, 1, plogis(0.5 * (age - 60) + 0.3 * comorbidity - 0.2 * 
baseline_sbp)) /Treatment assignment/ 
sbp_reduction <- -5 * treatment + 0.2 * baseline_sbp + rnorm(n, 0, 5) /SBP reduction/ 

 
/Combine into a data frame/ 
data <- data.frame(age, baseline_sbp, comorbidity, treatment, sbp_reduction) 
 
/Propensity score model/ 
propensity_model <- glm(treatment ~ age + baseline_sbp + comorbidity, family = 
binomial, data = data) 
data$propensity_score <- predict(propensity_model, type = "response") 
 
/Calculate IPTW weights/ 
data$weight <- ifelse(data$treatment == 1, 
1 / data$propensity_score, 
1 / (1 - data$propensity_score)) 
 
/Check balance before and after weighting/ library(tableone) 
unweighted_table<-CreateTableOne(vars=c("age","baseline_sbp", "comorbidity"), 
strata="treatment",data = data, test = FALSE) weighted_table<-
svyCreateTableOne(vars=c("age","baseline_sbp", comorbidity"), 
strata = "treatment", 
data=svydesign(ids=~1, weights = ~weight, data = data), test = FALSE) 
print(unweighted_table) print(weighted_table) 
 
/Weighted regression/ 
weighted_model<-lm(sbp_reduction ~ treatment,data=data,weights = data$weight) 
summary(weighted_model) 

 
Results 
 

• Balance Check: Covariates should be balanced between treatment groups after 
weighting (e.g., standardized mean difference < 0.1). 

• Weighted Regression: The coefficient of the treatment variable represents the 
estimated average treatment effect (ATE) adjusted for confounding . 

 

2.7. Other weighting methods 
 

• Stabilized weights: Prevent extreme weights by normalizing with the marginal 
probability of treatment. 
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( )

( )

( )

( )

1
1, 0

1
i i i i

i i

P T P T
w ifT w ifT

e X e X

−
= = = =

−
      (5) 

• Overlap weights: Focus on the population with overlapping propensity scores, 
emphasizing regions of equipoise. 

( )( ) ( ) ( ). 1 1 .i i i i iw T e X T e X= − + −        (6) 

• Entropy balancing: Directly balance covariates by reweighting the data without 
explicitly modeling the propensity score. 

• Generalizes propensity scores: Extend the propensity score framework for 
continuous or multinational treatments. 

 
Sensitivity analysis 

 
Sensitivity analysis is crucial in real-world evidence (RWE) to assess the robustness of 
study results against potential biases, such as unmeasured confounding, missing data, 
model assumptions, and analytical choices. In clinical trials, sensitivity analysis helps 
determine whether conclusions remain consistent under varying scenarios or assumptions 
[19,20]. 
 
Application: Crucial for MNAR scenarios, where the missingness depends on unobserved 
data. 
Advantages: Provides insights into the potential impact of missingness on results. 
Limitations: Does not resolve missing data but assesses its influence on findings. 
Example: Using observational data, you are evaluating the effect of a new cholesterol- 
lowering drug on LDL cholesterol levels. While propensity score weighting was used to 
balance observed covariates, you suspect there might be unmeasured confounders (e.g., 
dietary habits) that could bias the results. Sensitivity analysis helps quantify the potential 
impact of such unmeasured confounders. 
 

Steps 
 

• Base Analysis: Perform the primary analysis using propensity score-weighted 
regression to estimate the treatment effect. 

• Quantify Unmeasured Confounding: Use sensitivity analysis techniques like E- 
values, bounding approaches, or bias formulas to evaluate how strong an unmeasured 
confounder would need to be to explain away the observed effect [14]. 

• Vary Key Parameters: Modify assumptions (e.g., missing data mechanisms, model 
specifications) and assess their impact on results. 

 
Step 1: Primary analysis 
 

• Simulated Data set.seed(123) 
n <- 300 
age <- rnorm(n, mean = 60, sd = 10) /Age/ 
baseline_ldl <- rnorm(n, mean = 150, sd = 20) /Baseline LDL/ smoking <- rbinom(n, 
1, 0.3) /Smoking status/ 
treatment<-rbinom(n, 1, plogis(0.5 *(age - 60) + 0.4 * smoking - 0.3 * baseline_ldl)) 
/Treatment/ 
ldl_reduction <- -10 *treatment + 0.2 * baseline_ldl + smoking * 5 + rnorm(n, 0, 5) 
/LDL reduction/ 
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• /Combine data/ 
data <- data.frame(age, baseline_ldl, smoking, treatment, ldl_reduction) 

 

• /Propensity score model/ 
propensity_model <- glm(treatment ~ age + baseline_ldl + smoking, family = 
binomial, data = data) 
data$propensity_score <- predict(propensity_model, type = "response") 

 

• /IPTW weights/ 
data$weight <- ifelse(data$treatment == 1, 1 / data$propensity_score, 1 / (1 - 
data$propensity_score)) 

 

• /Weighted regression/ 
primary_model <- lm(ldl_reduction ~ treatment, data = data, weights = data$weight) 
summary(primary_model) 

 
Step 2: Sensitivity analysis for unmeasured confounding 
 
• E-value Calculation 
The E-value quantifies the minimum strength of association an unmeasured confounder 
must have with both the treatment and the outcome to explain away the observed effect 
fully [18]. 
 
library(EValue) 
/Estimate from primary analysis/ 
treatment_effect <- coef(primary_model)["treatment"] conf_int <- 
confint(primary_model)["treatment", ] 
 
/Calculate E-value/ 
evalue<-evalues.OLS(treatment_effect,se= 
summary(primary_model)$coefficients["treatment", "Std. Error"]) print(evalue) 
 
Step 3: Varying parameters 
Scenario: Adding Simulated Confounder 
Simulate an unmeasured confounder (UUU) and re-estimate the treatment effect. 

 

• Simulate an unmeasured confounder (e.g., dietary habits) 
data$unmeasured <- rbinom(n, 1, plogis(0.3 * data$age + 0.5 * data$smoking)) 

 
/Include the unmeasured confounder in the model/ 
adjusted_model <- lm(ldl_reduction ~ treatment + unmeasured, data = data, weights 
= data$weight) summary(adjusted_model) 

 
Results 
 

1. E-value: Provides the robustness of the effect size against unmeasured confounding. 
2. Simulated Confounder: Adjusted models can demonstrate the impact of potential 

unmeasured variables. 
3. Missing Data: Analyzing multiple missing data mechanisms helps evaluate the 

sensitivity of results to different assumptions. 
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3. Machine Learning Algorithms 
 
Machine learning (ML) algorithms are increasingly used in real-world evidence (RWE) to 
derive insights from large, complex, and heterogeneous datasets [21]. They are applied for 
predicting patient outcomes, identifying treatment responders, detecting adverse events, and 
uncovering patterns in healthcare data. These techniques complement traditional methods by 
handling non-linear relationships, high-dimensional data, and interactions among covariates 
[14, 22, 23]. 
 

3.1. Key use cases of ML in RWE 
 

1. Propensity Score Modeling: Using ML for robust estimation of propensity scores in 
non-randomized studies. 

2. Predictive Modeling: Identifying patients likely to respond to treatments. 
3. Risk Stratification: Categorizing patients based on disease progression or treatment 

risk. 
4. Clustering: Unsupervised learning to discover subpopulations or treatment patterns. 
5. Causal Inference: Estimating treatment effects using algorithms like targeted 

maximum likelihood estimation (TMLE) or double machine learning (DML). 
 
Advantages: Adaptable to various data types and capable of handling non-linear 
relationships. 
Limitations: May overfit data and require careful validation. 
Example: You want to predict whether patients with Type 2 Diabetes (T2D) will achieve 
HbA1c < 7% after initiating a new antidiabetic drug, using real-world data (EHRs and claims). 
The dataset includes demographic, clinical, and treatment information. 
 
Steps 
 

1. Data preparation 
Preprocess data (handle missing values, encode categorical variables, standardize 
numeric variables). 
Split the data into training and testing sets. 

2. Algorithm selection 
Use classification algorithms like logistic regression, random forests, gradient boosting 
machines (GBM), or neural networks for binary outcome prediction. 

3. Model training 
Train the model on the training set and tune hyperparameters. 

4. Model evaluation 
Evaluate model performance using metrics like accuracy, AUC-ROC, precision, and 
recall. 

5. Interpretation 
Use tools like SHAP (SHapley Additive exPlanations) to interpret feature importance
  

• Load necessary libraries 
library(caret) /For model training/ 
library(randomForest) /Random Forest/  
library(pROC) /ROC curves/  
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library(dplyr) /Data manipulation/  
library(ggplot2) /Visualization/ 

 

• Simulated Data 
set.seed(123) 
n <- 500 
age <- rnorm(n, 60, 10) /Age/ 
bmi <- rnorm(n, 28, 5) /BMI/ 
baseline_hba1c <- rnorm(n, 8, 1.5) /Baseline HbA1c/  
drug <- rbinom(n, 1, 0.5) /Drug (new=1, standard=0)  
duration <- rnorm(n, 6, 2) /Treatment duration in months/ 
achieved_target <- rbinom(n, 1, plogis(-0.1*age + 0.05*bmi - 0.5*baseline_hba1c 
+ 0.8*drug)) /Outcome/ 
data <- data.frame(age, bmi, baseline_hba1c, drug, duration, achieved_target) 

 

• /Split data into training and test sets/ 
set.seed(123) 
train_index <- createDataPartition(data$achieved_target, p = 0.7, list = FALSE)  
train_data <- data[train_index, ] 
test_data <- data[-train_index, ] 

 

• /Train Random Forest model/ 
set.seed(123) rf_model <- randomForest(achieved_target ~ ., data = train_data, ntree 
= 500, importance = TRUE) 

 

• /Evaluate model/ 
rf_predictions <- predict(rf_model, test_data, type = "response")  
confusion_matrix<-confusionMatrix(as.factor(rf_predictions), 
as.factor(test_data$achieved_target)) 
print(confusion_matrix) 

 

• /ROC curve/ 
roc_curve<-roc(test_data$achieved_target,as.numeric(rf_predictions)) 
plot(roc_curve, main = "ROC Curve for Random Forest Model") 

 

• /Feature Importance/ 
importance <- varImpPlot(rf_model, main = "Variable Importance") 

 
Results 
 

1. Model Performance: 

• Confusion matrix provides accuracy, sensitivity, and specificity. 

• ROC-AUC quantifies the model’s ability to discriminate between classes. 
2. Feature Importance: 

• Identifies key predictors of achieving HbA1c < 7%. 
 

3.2. Bayesian methods 
 
Bayesian methods are increasingly used in clinical trials and real-world evidence (RWE) to 
incorporate prior knowledge, handle uncertainty, and update evidence dynamically as data 
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accumulate. These methods are especially valuable in RWE due to their ability to model 
complex data structures, address missing data, and account for heterogeneity [24]. 
 
 

• Key applications of bayesian methods in RWE 
 

i) Hierarchical modeling: Handling variability across patient populations, sites, or 
time periods [25]. 

ii) Bayesian network meta-analysis: Combining evidence from multiple sources to 
assess treatment efficacy. 

iii) Bayesian adaptive trials: Dynamically modifying trial designs based on interim 
data. 

iv) Causal inference: Estimating treatment effects while incorporating prior 
information about confounders. 

v) Missing data: Imputing missing values using Bayesian approaches. 
 

Advantages: Ability to incorporate prior information and handle complex data 

structures. Provides full posterior distributions, enabling direct probabilistic statements. 

Naturally incorporates uncertainty in parameter estimates. Combines data from various 

sources, including historical and real-world data [26,27]. 

Limitations: Bayesian methods, especially MCMC, can be computationally expensive. 

Results are sensitive to the choice of priors, which may introduce bias if poorly chosen. 

Requires expertise to build, validate, and interpret Bayesian models [28-31]. 

Example: You are analyzing the effect of a new antihypertensive drug on systolic blood pressure 

(SBP) reduction across multiple hospitals. Real-world data often include site- level variability, 

which can be modeled using a Bayesian hierarchical approach. 
 
Steps 
 

1. Data setup 
Prepare data for modeling SBP reduction as a function of treatment, accounting for 
hospital-level variability. 

2. Define the model 
Use a hierarchical structure: 
Level 1: Patient-level SBP reduction. 
Level 2: Hospital-specific effects. 

3. Set priors 
Incorporate prior knowledge about the treatment effect and variability. 

4. Posterior inference 
Use Markov Chain Monte Carlo (MCMC) methods to estimate posterior distributions. 

5. Interpret results 
Summarize posterior distributions to draw conclusions about treatment effects. 

 

• Simulated Data 
set.seed(123) 
n_hospitals <- 10 
patients_per_hospital <- 50 n <- n_hospitals * patients_per_hospital 
hospital <- rep(1:n_hospitals, each = patients_per_hospital) 
treatment <- rbinom(n, 1, 0.5) # 1 = treated, 0 = control 
hospital_effect <- rnorm(n_hospitals, mean = 0, sd = 2) 
baseline_sbp <- rnorm(n, mean = 140, sd = 10) 
sbp_reduction <- -5 * treatment + hospital_effect[hospital] + rnorm(n, mean = 0, sd 
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= 5) 
data <- data.frame(hospital, treatment, baseline_sbp, sbp_reduction) 

 

• Bayesian Hierarchical Model Using rstanarm 
/Load library/ 
library(rstanarm) 
/Define Bayesian hierarchical model/ 
model <- stan_lmer( 
sbp_reduction ~ treatment + (1 | hospital), 
data = data, prior = normal(0, 5), /Weakly informative prior for fixed effects/  
prior_intercept = normal(0, 10), /Prior for intercept/ 
prior_covariance = decov(1, 1) # Prior for random effects covariance) 
/Summary of results/ print(summary(model)) 
/Posterior predictive checks/ pp_check(model) 

 

Results 

 

1. Treatment effect: The posterior distribution provides credible intervals for the 

effect of treatment on SBP reduction. 

2. Hospital variability: Estimates of between-hospital variability highlight 

heterogeneity. 

3. Posterior predictive checks: Ensure model fit and plausibility of results. 
 

3.3. Choosing the right method 
 
The choice of a method to handle missing data should be guided by: 

• Mechanism of missingness: Understanding whether the data is MCAR, MAR, or 
MNAR is foundational. 

• Study context: Consideration of study design, sample size, and computational 
resources. 

• Study goals: Balancing simplicity, computational demands, and the need for robust 
and unbiased estimates. 

 
By systematically applying these methods, researchers can minimize the biases introduced by 
missing data, ensuring the integrity and reliability of RWE studies. 
 
Future advancements in machine learning and Bayesian approaches offer transformative 
solutions for handling missing data in complex real-world evidence (RWE) datasets. Machine 
learning methods, such as Random Forests, Deep Learning, and time-series models like 
LSTMs, excel in capturing nonlinear relationships, handling high-dimensional data, and 
imputing temporal patterns. Bayesian approaches enhance uncertainty quantification, 
incorporate prior domain knowledge, and can explicitly model Missing Not at Random 
(MNAR) mechanisms. Hybrid methods, like Bayesian Neural Networks, combine the 
strengths of both paradigms, enabling robust and transparent imputation. Together, these 
advancements promise greater scalability, accuracy, and trustworthiness in addressing the 
challenges of missing data in RWE. 
 

3.4. Tools and libraries in R for handling missing data 
 
R offers a rich ecosystem of packages designed to handle missing data effectively. These tools 
support imputation, visualization, and exploratory analysis, enabling researchers to address 
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missingness systematically and efficiently. Below is an overview of key R libraries and their 
features. 
 

3.5. MICE (Multivariate imputation by chained equations) 
 
Multivariate Imputation by Chained Equations (MICE), also known as fully conditional 
specification or sequential regression multiple imputation, is a statistical method used to 
handle missing data. It is widely employed in clinical research, epidemiology, and other fields 
where incomplete datasets are common. MICE estimate missing values by iteratively 
imputing them based on other variables in the dataset, considering the multivariate 
relationships. 
 

• Purpose: Implements multiple imputation by generating plausible values for missing 
data based on chained equations. 

• Key Features: 
Supports various data types, including categorical and continuous variables. 
Produces multiple completed datasets for robust analysis. 
Results can be combined using Rubin’s rules for inference. 

• Example: 
R 
library(mice) 
imputed_data<-mice(data,method="pmm",m=5)  
complete_data <- complete (imputed_data, 1) 

 

3.6. Miss forest 
 
MissForest is a non-parametric imputation method based on the Random Forest algorithm. It 
is widely used to handle missing data in datasets with complex, nonlinear relationships and 
interactions between variables. Unlike parametric methods, missForest does not assume a 
specific distribution of the data, making it a versatile and robust choice for imputing missing 
values. 

• Purpose: Utilizes Random Forests to impute missing values for both categorical and 
continuous variables. 

• Key Features: 
Handles non-linear relationships and complex interactions in the data. 
Retains a low level of imputation error, especially for large datasets. 

• Example: 
R 
library(missForest) 
imputed_data <- missForest(data) 

 

3.7. Hmisc 
 
The Hmisc package in R, developed by Frank E. Harrell Jr., is a comprehensive library 
designed for data analysis, visualization, and manipulation, with a strong focus on missing 
data handling. It is particularly useful in statistical modeling, medical research, and clinical 
data analyses. The package provides tools for data summary, imputation, descriptive 
statistics, and advanced visualization, making it a versatile choice for data scientists and 
biostatisticians. 

• Purpose: Provides tools for single imputation and descriptive statistics. 

• Key Features: 
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Enables simple imputation using mean, median, or regression models. 
Offers comprehensive utilities for data exploration and summaries. 

• Example: 
R 
library(Hmisc) 
imputed_data <- impute(data$variable, fun = mean) 
 

3.8. VIM (Visualization and imputation of missing data) 
 
The VIM package in R provides tools for the visualization and imputation of missing data, 
with a strong focus on exploring the structure and patterns of missingness. It is widely used 
in research fields like epidemiology, clinical trials, and social sciences, where understanding 
the nature of missing data is crucial before applying imputation methods. The package 
integrates methods for identifying missing data patterns, diagnosing the impact of 
missingness, and implementing various imputation techniques. Additionally, its visualization 
features help in evaluating the quality of imputations. 

• Purpose: Specializes in visualizing missing data patterns and performing imputation. 

• Key Features: 
Generates graphical representations like aggr plots and scatter plots with missing 
values highlighted. 
Facilitates understanding of missingness mechanisms. 

• Example: 
R 
library(VIM) 
aggr_plot <- aggr(data, col = c("navyblue", "red"), numbers = TRUE, sortVars = TRUE) 

 
3.9. Naniar 
 
The naniar package in R is a powerful tool for handling, visualizing, and imputing missing 
data. Its capabilities make it particularly relevant for real-world evidence (RWE) studies, 
where missing data is common due to the nature of observational datasets. 

• Purpose: Offers comprehensive tools for exploring, visualizing, and imputing missing 
data. 

• Key Features: 
Simplifies missing data exploration with functions like gg_miss_var and 
gg_miss_case. 
Provides flexible options for imputation and analysis. 

• Example: 
R 
library(naniar)  
gg_miss_var(data) 

 

3.10. Amelia 
 
The Amelia package in R is a robust tool for multiple imputation of missing data. It is 
particularly valuable for real-world evidence (RWE), where missing data is a persistent 
challenge due to the observational nature of datasets. 
 

• Purpose: Focuses on multiple imputation of missing data using an expectation- 
maximization algorithm with bootstrapping. 

• Key Features: 
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Efficient for time-series and cross-sectional data. 
Generates multiple datasets for robust inference. 

• Example: 
R 
library(Amelia) 
imputed_data <- amelia(data, m = 5) 

 

3.11. Choosing the right tool 
 
The selection of an R package depends on the nature of the missing data and the study's 
objectives: 
 

• For multiple imputation, consider mice or Amelia. 

• For datasets with non-linear relationships, missForest is a strong choice. 

• Use VIM or naniar for visualization and pattern analysis. 

• For simple imputation and descriptive summaries, Hmisc provides a quick solution. 
 
By leveraging these tools, researchers can systematically explore and address missingness, 
ensuring more reliable and transparent outcomes in RWE studies. 

 
4. Best Practices for Handling Missing Data 
 
Adopting best practices for addressing missing data is crucial to ensuring the validity and 
transparency of real-world evidence (RWE) studies. These practices guide researchers in 
systematically managing missingness, minimizing biases, and enhancing the credibility of 
their findings. Below are key recommendations: 
 

4.1. Assess patterns of missingness 
 
Understanding the extent and nature of missing data is the first step in addressing it 
effectively. 

• Why It’s Important: Patterns of missingness provide insights into the potential 
mechanisms (MCAR, MAR, or MNAR) and guide the selection of appropriate 
handling methods. 

• How to Implement: 
Use visualization tools like VIM and naniar to explore missing data patterns visually. 
Generate heatmaps, aggregation plots, and scatterplots to identify relationships 
between missingness and observed variables. 

• Example: 
R 
library (VIM) aggr(data,col=c("navyblue","red"),numbers=TRUE) 
library(naniar) gg_miss_var(data) 
 

4.2. Document assumptions 
 
Clearly state and justify the assumptions about the missing data mechanism. 

• Why It’s Important: Transparency about assumptions (e.g., MAR or MNAR) ensures 
that the methods used align with the characteristics of the data and helps reviewers 
and readers evaluate the robustness of the results. 

• How to Implement: 
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Include a section in study documentation or publications explicitly describing the 
hypothesized missing data mechanism. 
Support assumptions with statistical tests and domain knowledge. 

 

4.3. Combine methods 
 
Using a combination of methods often yields more robust results. 

• Why It’s Important: No single method addresses all aspects of missing data. 
Combining techniques, such as multiple imputation and sensitivity analysis, ensures 
a comprehensive approach. 

• How to Implement: 
Perform multiple imputation to handle MAR data and follow up with sensitivity 
analysis to test robustness under MNAR scenarios. 
Use advanced machine learning tools like missForest alongside traditional imputation 
techniques to improve accuracy. 

• Example Workflow: 
Use mice for multiple imputations: 
 R 
library(mice) 
imputed_data <- mice (data, method = "pmm", m = 5) 

• Perform sensitivity analysis to test assumptions: 
Adjust parameters and compare results under different scenarios. 

 

4.4. Report handling in publications 
 
Transparency in reporting missing data handling is essential for reproducibility and 
credibility. 

• Why It’s Important: Readers and stakeholders must understand how missingness was 
addressed to assess the validity of the findings. 

• How to Implement: 
The extent of missing data. 
Assumptions about the mechanism. 
Methods used for handling and the rationale behind their selection. 
Sensitivity analyses and their implications. 

• Example in a manuscript: 
"Missing data accounted for 12% of the dataset. Data were assumed to be MAR based 
on an analysis of missingness patterns and domain knowledge. Multiple imputation 
using chained equations (mice package in R) was applied, followed by sensitivity 
analysis to assess the robustness of findings under MNAR scenarios." 
 

4.5. Managing stakeholders 
 
Stakeholder involvement is critical in shaping best practices for addressing missing data in 
real-world evidence (RWE) studies, as it ensures that solutions are aligned with practical and 
regulatory needs. Clinicians provide insights into the clinical relevance of variables and 
plausible ranges for imputations, helping to ground the data-handling process in real-world 
medical contexts. Policymakers and regulators contribute by defining transparency, 
reproducibility, and compliance standards, ensuring that missing data methodologies meet 
evidentiary requirements for decision-making. Collaborating with stakeholders fosters 
consensus on acceptable methods, supports domain-specific adaptations, and enhances the 
credibility and applicability of RWE findings in healthcare policy and practice [32, 33]. 
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4.6. Enhancing reproducibility in missing data handling  
 
To improve the reproducibility of missing data handling in RWE studies, it is essential to 
document and standardize every step of the process. Using transparent pipelines with well-
documented code in languages like R or Python ensures that analyses can be easily replicated. 
Leveraging version-controlled environments (e.g., Git) helps track changes to imputation 
methods or datasets over time. Sharing detailed imputation protocols, including assumptions, 
diagnostics, and rationale for chosen methods, supports reproducibility across studies. 
Finally, adopting reproducible research tools like R Markdown or Jupyter Notebooks 
facilitates seamless sharing of workflows, from data preparation to imputation and final 
analysis [34, 35]. 
 

5. Conclusion 
 
Handling missing data is a pivotal aspect of real-world evidence (RWE) studies, directly 
influencing the validity and reliability of findings. Missingness, if not addressed 
systematically, can introduce bias, undermine statistical power, and compromise study 
conclusions. This paper provided a comprehensive exploration of the challenges and solutions 
related to missing data, focusing on understanding mechanisms, applying appropriate 
methods, leveraging tools, and adhering to best practices.      

 
5.1. Key takeaways 
 

• Understanding missing data mechanisms 
Recognizing the nature of missingness—MCAR, MAR, or MNAR—is foundational. It 
informs the selection of methods for handling missing data, ensuring that the chosen 
approach aligns with the data's characteristics. 

• Methods for handling missing data 
A range of methods exists, from simple techniques like complete case analysis and 
single imputation to advanced approaches like multiple imputation, maximum 
likelihood estimation, and machine learning models. Each method has its strengths 
and limitations, necessitating careful consideration based on the study’s context and 
goals. 

• Tools in R 
R offers a robust suite of packages, such as mice, missForest, VIM, naniar, and Amelia, 
which provide researchers with powerful capabilities for exploring, visualizing, and 
imputing missing data. The flexibility and depth of these tools empower researchers 
to handle missingness effectively and efficiently. 

 

5.2. Best practices 
 
Adopting best practices, including assessing patterns of missingness, documenting 
assumptions, combining complementary methods, and transparent reporting strategies, 
enhances the credibility of RWE studies. These practices minimize bias and facilitate 
reproducibility, ensuring that findings are robust and reliable. 
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5.3. Final thoughts 
 
Addressing missing data is a technical challenge and a methodological imperative in RWE 
studies. By combining a thorough understanding of missingness mechanisms, selecting and 
applying appropriate methods, utilizing advanced tools, and adhering to best practices, 
researchers can produce high-quality, transparent, and credible results. These efforts 
ultimately contribute to better-informed healthcare decisions, fostering confidence in the 
outcomes derived from RWE studies. 
 
Future advancements, such as the integration of machine learning and Bayesian approaches, 
promise further improvements in handling missing data. However, the principles of 
systematic assessment, transparency, and robustness will remain the cornerstone of effective 
data management in RWE research. 
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