DNA Linear Block Codes: Generation, Error-Detection, and Error-Correction of DNA Codeword
Abstract
In modern age, the increasing complexity of computation and communication technology is leading us towards the necessity of new paradigm. As a result, unconventional approach like DNA coding theory is gaining considerable attention. The storage capacity, information processing and transmission properties of DNA molecules stimulate the notion of DNA coding theory as well as DNA cryptography. In this paper we generate DNA codeword using DNA (n, k) linear block codes which ensures the secure transmission of information. In the proposed code design strategy DNA-based XOR operation (DNAX) is applied for effective construction of DNA codewords which are quadruples generated over the set of alphabets, . By worked out examples we explain the use of generator matrix and parity check matrix in encryption and decryption of coded data in the form of short single stranded DNA sequences. The newly developed technique is capable of detecting as well as correcting error in transmission of DNA codewords from sender to the intended receiver.
Copyright (c) 2022 Mandrita Mondal, Kumar S. Ray
This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.
Copyright © by the authors; licensee Research Lake International Inc., Canada. This open-access article is distributed under the terms of the Creative Commons Attribution Non-Commercial License (CC BY-NC) (http://creative-commons.org/licenses/by-nc/4.0/).