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Abstract

This article presents the application of the 
ROSES system in intracranial procedures, 
integrating artificial intelligence (AI) to enhance 
precision and safety. The system uses advanced 
robotic actuators and disposable tools to manage 
microcatheters and guidewires, enabling efficient 
stent placement while minimizing contact with 
aneurysms. By leveraging angiographic data to 
create 3D vascular models, the AI determines 
optimal pathways, calculates stent dimensions, 
and identifies critical curvatures. This approach 

allows for automated or manual intervention 
based on procedural requirements, reducing 
the need for physician presence during high-
risk stages. The innovation significantly lowers 
radiation exposure and improves procedural 
outcomes in complex intracranial surgeries, 
offering a promising step toward more 
autonomous endovascular systems. Importantly, 
this system reduces the necessity for a doctor 
to be physically present with the patient, as the 
AI and robotic components can manage much 
of the procedure remotely. This advancement 
could greatly enhance the efficiency and safety 
of medical procedures.
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Introduction

Minimally invasive surgeries, such as 
laparoscopy, orthopedic, and spine procedures, 
have revolutionized patient care by reducing 
surgical risks, recovery times, and healthcare 
costs [1-5]. Despite the widespread adoption 
of robotic systems in these fields [6-10], their 
application in endovascular procedures remains 
limited. High costs, technical challenges, and 
restricted usability often confine their use 
to specialized systems, such as CorPath by 
Corindus, which was designed for angioplasty 
but is presently under modification with the 
addition of elements by Siemens [11-16], 
and Robocath [17], which were designed 
for angioplasty, or the Magellan system by 
Hansen Medical [18-21], developed for broader 
endovascular surgeries. These systems primarily 
function as master-slave devices, requiring 
constant operator input without leveraging 
autonomous capabilities.

In endovascular brain procedures, such as 
aneurysm treatments, the risks are amplified 
by the need for prolonged radiation exposure 
during fluoroscopy and the physical demands 
placed on neuro-radiologists. Protective lead 
aprons reduce radiation exposure but contribute 
to chronic spine issues [22-33]. Manual catheter 
manipulation, often preferred by practitioners 
for its tactile feedback, offers limited precision 
in quantitative measurements, such as stenosis 
length or force applied during catheter 
advancement. Robotic systems, in contrast, 
provide measurable feedback and precise 
control, yet their adoption is hindered by cost 
and complexity [34,35].

The ROSES system, also initially tested on 
angioplasty (Figure 1), aims to address these 
limitations by integrating artificial intelligence 
(AI) with robotic-assisted technology to perform 
intracranial interventions. Unlike existing 

systems, ROSES combine simple, cost-effective 
disposables with advanced robotic actuators 
and AI algorithms. This approach minimizes 
radiation exposure and physical strain on 
doctors, enabling greater procedural precision 
and safety. By incorporating AI to map optimal 
catheter pathways and automate key tasks, 
the system enhances operator efficiency and 
reduces the need for direct physical presence 
during critical stages.

This article focuses on the innovative design 
of the ROSES system, emphasizing its unique 
integration of AI for stent placement and 
aneurysm management. The following sections 
outline the technical composition of the system, 
its potential impact on clinical outcomes, and 
the path toward its implementation in routine 
medical practice.

A brief description of the ROSES system

The core of the ROSES system is a gear train 
composed of three large gears and a rotation 
frame fixed to the first gear. The second and 
third gears are hollow and internally toothed. 
Two shafts fixed to internal planets mesh with 
the internal toothing of the hollow gears and are 
hinged to the main gear and the rotating frame. 
These shafts extend from the “mother gear,” 
which also holds two bevel gears designed to 
transmit motion to the disposables. Figure 2 
illustrates the initial scheme, using colors to 
highlight the motion chain, which now begins 
with motors.

Figure 1) The angioplasty clinical trials.
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This gear train is central to each Robotic Actuator 
(RA), which may include one or two rotating 
frames, depending on the task. The RAs are 
mounted on low-friction slides inclined toward 
the patient. The proximal RA is secured to another 
slide with lateral bars that hold the motors, enabling 
controlled motion between RAs via toothed belts. 
To prevent the system from falling onto the patient, 
wires connect it to fixed points, counterbalanced 
by weights. A force sensor measures the residual 
g-component of the rail’s load. If resistance is 
encountered, such as from the catheter meeting an 
obstruction the system detects it through changes 
in weight distribution, flagging potential dangers 
(Figure 3).

The first RA is primarily dedicated to introducing 
the initial catheter, working in tandem with the 
second RA, which holds the hemostatic valve and 
introductory catheter on a rotating plate. During 
this phase, the second RA moves toward the 
first RA, while the internal planet gear handles 

the guide wire. After catheter introduction, the 
gear train shifts focus to the main procedure. 
Various disposables have been designed for 
ROSES, including a nearly universal disposable 
initially created for angioplasty but adaptable 
for brain applications. Figure 4 highlights the 
disposable’s spring-loaded frame, which adjusts 
to different catheter or guide wire sizes.

For brain procedures, a specially designed 
catheter with a 4 mm turning radius navigates 
sharp arterial bends. Available in three sizes 
for guide wires of 0.017”, 0.021”, and 0.027”, 
the catheter integrates two lumens: one for the 
guide wire and brain stent, and another for a 
nylon wire. Wedge-shaped cuts along the nylon 
wire create flexibility for precise control. The 
catheter’s curvature mechanism is attached to 
the third RA’s rotating frame, enabling fine-
tuned adjustments during insertion. As far as 
the direction in which the catheter turns, it is 
known since rotations are controlled counting 
steps from a reference position. The hemostasis 
valve prevents blood leakage and ensures proper 
contrast liquid delivery into the intracranial 
circulation (Figure 5).

Figure 2) The basic mechanism of our gear train with 
three degrees of control.

Figure 4) The new almost universal disposable initially 
designed for angioplasty.

Figure 3) The new cart under construction.
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Use of AI to guide the progression of the 
catheters inside the brain arteries

In procedures such as brain aneurysm treatment, 
the process begins with the doctor navigating 
the catheter to the carotid artery. At this point, an 
initial CT scan of the skull is taken, followed by 
the injection of contrast fluid for a second scan 
that visualizes the intracranial vascular system. 
The operator then marks three key points: the 
catheter’s starting position in the carotid artery, 
the beginning of the stent’s placement, and its 
intended endpoint.

Using this input, the AI system calculates the 
optimal path for the catheter by determining the 
central coordinates of the arterial section within 
the angiograph’s reference system. Starting a 
few millimeters beyond the initial point, the 
AI maps a trajectory through successive points 
until reaching the endpoint. While operators 
could manually perform these tasks using the 
angiographer’s program, the AI significantly 
accelerates and automates the process across 
the entire brain arterial system [36-45].

By analyzing the vascular path, the AI identifies 
key parameters such as the minimum section, 

the shortest radius of curvature, and the precise 
length of the stent required. In cases where 
a sharp directional change occurs near an 
aneurysm, the system interpolates additional 
intermediate points to create a curve compatible 
with the anatomy of the intracranial circle, 
ensuring a safe and efficient trajectory.

Figure 6 illustrates the AI’s calculated path 
overlaid on the original angiographic image of 
the intracranial circle. These visual highlights 
the precision and adaptability of the AI system 
in mapping catheter progression.

Once the coordinates of the path are defined, the 
system advances the micro-guide wire followed 
by the microcatheter. The system pauses at 
predefined intervals or when the operator raises 
concerns about the trajectory. For procedures 
using the animated catheter, such stops are rarely 
necessary, as the computed path ensures reliable 
guidance. This approach offers a stark contrast 
to traditional manual advancement, which lacks 
the precision and predictive capabilities of the 
AI-guided system.

By automating critical steps and providing real-
time data, the ROSES system demonstrates a 
significant advancement in safety and efficiency 
for intracranial procedures, reducing the reliance 
on manual intervention while offering a layer of 
oversight for operators.

Next Steps

We have already collected multiple 3D 
representations of the endocranial circle from 
angiographic scans. Using tools like Altair’s 
generative software, we will process these 

Figure 5) Catheter with controlled tip curvature for brain 
procedures on the left the control mechanism containing 
the drum that pulls the internal wire, on the right, the 
catheter tip, straight and bent.

Figure 6) The AI simulated intervention.
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data as previously described. In parallel, 
the Python program required to control the 
various procedures often involving three 
motors operating under separate controllers 
is in active development. Meanwhile, the 
physical construction of the robotic actuators is 
progressing.

Once the system is ready, we will employ the 
Python library opedSCAD to generate a precise 
3D model of the endocranial circle. This model 
will be used to build a transparent replica, 
complete with extra stabilizing legs. These 
features will allow the model to be positioned 
on a horizontal plane, ensuring that each point 
corresponds accurately to the angiographic 
coordinates. To guarantee correct alignment 
of the system, we will include an initial rigid 
tube, precisely aligned with the carotid’s entry 
portion, to validate the guide wire tip curvature 
in a vertical plane. With these elements in place, 
we can begin in vitro demonstrations to verify 
the automatic system’s functionality. This 
progression lays the groundwork for eventual in 
vivo testing [46-52].

Conclusion

With foundational development nearing 
completion, we are ready to test the ROSES 
system across various applications. By the 
end of January, the first complete prototype, 
integrating both software and hardware, will 
be finalized and prepared for in vitro trials. Our 
work has been protected by multiple patent 
applications, many of which are set for global 
extension.

In parallel, we are developing a “black box” 
version of the system, which will encapsulate 
the technology while safeguarding its 
proprietary design. This effort ensures that the 
system’s innovative capabilities such as AI-
guided catheter navigation akin to following the 
“small stones” of Tom Thumb can revolutionize 
intracranial interventions, reducing radiation 
exposure and enhancing procedural precision.

These steps represent a pivotal moment 
in advancing automated and AI-integrated 
solutions for complex endovascular procedures. 
We are committed to refining and expanding this 
technology to benefit patients and healthcare 
providers worldwide.
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